Advanced Biomedical Research and Innovation

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

betkolik betlike betpark betticket betturkey extrabet holiganbet ilbet ikimisli imajbet jojobet kralbet mariobet marsbahis meritking milanobet piabet redwin süpertotobet tempobet

Halloysite nanotube bio-inks support adhesion and differentiation of stem cells towards bone lineages

Halloysite nanotubes are naturally formed clays, which exhibit high levels of cyto-compatibility. The tubular structure of HNT enables its loading with a variety of materials for sustained and extended release. This study examined the osteogenic potential of HNTs embedded in polycaprolactone constructs. Three-dimensionally printed PCL constructs and solvent cast films were studied and compared to HNT-loaded versions. Scaffold topographies were monitored with scanning electron microscopy. Alkaline phosphatase and alizarin red staining was used to examine osteogenic differentiation of human placental-derived mesenchymal stem cells and mouse bone marrow mesenchymal stem cells on bio-ink surfaces. Cellular adhesion was monitored by optical and fluorescent microscopy and examined with Calcein AM and ethidium homodimer. Results showed that cell adhesion and ALP expression were significantly increased in both mBMSC and hPMSC by addition of HNTs, and inclusion of HNTs supported hPMSC proliferation and mineralization. Our results suggest that HNT-PCL composites have applications in 3D printer bio-inks, drug-delivery systems and bone tissue engineering.

Special Features

Full Text

View

Track Your Manuscript

Media Partners

GET THE APP