Research Article, J Nucl Ene Sci Power Generat Technol Vol: 6 Issue: 2
Modeling of Small Size Divertor Tokamak in Discharge withEdge Transport Barrier (ETB)
Bekheit AH* | |
Plasma and Nuclear Fusion Department, Atomic Energy Authority, Cairo, Egypt | |
Corresponding author : Amr Hasheim Bekheit Plasma & Nuclear Fusion Department, Atomic Energy Authority, Cairo, Egypt E-mail: amrhasheim@ yahoo.com |
|
Received: December 15, 2016 Accepted: January 31, 2017 Published: February 23, 2017 | |
Citation:Bekheit AH (2017) Modeling of Small Size Divertor Tokamak in Discharge with Edge Transport Barrier (ETB). J Nucl Ene Sci Power Generat Technol 6:2. doi: 10.4172/2325-9809.1000173 |
Abstract
The article is the simulation of small size divertor tokamak edge transport barrier “ETB”. The modeling carries out with the multifluid transport code B2SOLPS5.0 2D with drifts and currents which was specially developed for simulation of tokamak edge transport barrier“ETB”. The emphasis is made on edge transport barrier “ETB”. The simulation demonstrated the following results: The “ETB” width has strong influence on the radial electric field. The E×B drift shear is function of “ETB” width. The ion parallel (toroidal) velocity has cocurrent direction and quite different for different “ETB” width. This difference is connected with the contribution of large E×B drift velocity in toroidal torque driven by parallel viscosity which strong influence on toroidal rotation. The plasma density, electron and ion temperatures are typical feature of small size divertor tokamakwhen the particle and heat fluxes from core plasma are low. The sizes of the barrier have ability to prevent neutral particles penetrate the barrier edge in this tokamak. The ETB width has influence on the poloidal velocity in the edge plasma of this tokamak