Review Article, J Genes Proteins Vol: 1 Issue: 1
Marburg Virus Disease: A Review Literature
Sajida Sboui1 and Ahmed Tabbabi2*
1Faculty of Medicine of Monastir, Monastir University, Monastir, Tunisia
2Department of Hygiene and Environmental Protection, Ministry of Public Health, Tunis, Tunisia
*Corresponding Author : Ahmed Tabbabi
Department of Hygiene and Environmental Protection, Ministry of Public Health, Tunis, Tunisia
Tel: 0021697085424
E-mail: tabbabiahmed@gmail.com
Received: December 08, 2017 Accepted: December 20, 2017 Published: December 27, 2017
Citation: Sboui S, Tabbabi A (2017) Marburg Virus Disease: A Review Literature. J Genes Proteins 1:1.
Abstract
Marburg virus disease was identified for the first time in 1967 during an epidemic in Marburg and Frankfurt, Germany, after infected monkeys were imported from Uganda. Available and scattered data of Marburg virus disease were collected and summarized in the present report. Marburg virus global data including epidemiology, reservoir host, Clinique, diagnostic, transmission and prevention were reviewed. It is a serious and usually fatal disease caused by a virus of the same family as that at the origin of the Ebola virus disease. Because of their extreme pathogenicity and lack of vaccine at present, they are considered a potential biological weapon of category 4. The fatality rate varies from 25% during the first outbreak appeared in a laboratory in 1967 to over 80% between 1998 and 2000 in the Democratic Republic of Congo during the outbreak in Angola in 2005. Roussettus aegyptiacus is considered as the natural reservoir of this virus. The identification of the natural reservoir of this virus should foster the development health measures and prevention campaigns to the population to reduce the apparition and emergence of potential outbreaks of hemorrhagic fever.
Keywords: Marburg virus disease; Pathogenicity; Natural reservoir; Development health measure
Introduction
Marburg virus global data
Marburg virus disease (formerly known as Marburg haemorrhagic fever) was identified for the first time in 1967 during an epidemic in Marburg and Frankfurt, Germany, and in Belgrade, former Yugoslavia, after infected monkeys were imported from Uganda [1]. It is a serious and usually fatal disease caused by a virus of the same family as that at the origin of the Ebola virus disease. Both Marburg and Ebola viruses belong to the family Filoviridae (Filovirus). In contrast to the latter, for which five species exist, the Marburg virus comprises only one species composed of two distinct lines (MARV and RAVN) according to phylogenetic studies [2]. Although they are caused by different viruses, the two diseases are similar clinically. These viruses are among the most virulent pathogens in humans. Both diseases are rare but can cause dramatic outbreaks causing many deaths. The fatality rate varies from 25% during the first outbreak appeared in a laboratory in 1967 to over 80% between 1998 and 2000 in the Democratic Republic of Congo during the outbreak in Angola in 2005 [3,4]. Because of their extreme pathogenicity and lack of vaccine at present, they are considered a potential biological weapon of category 4. Their handling therefore requires extreme safety conditions [4].
Epidemiology
The first case of contamination identified on the African continent took place in 1975 in Johannesburg, in a young man returning from a trip to Zimbabwe [5]. Subsequently, the virus caused sporadic epidemics in Kenya [6,7] and Uganda [8,9]. The first episode of community epidemic in Africa took place between 1998 and 2000 in the Democratic Republic of Congo. During this outbreak, 154 cases including 128 deaths were identified. These were the first cases reported in the country [10]. Between October 2004 and August 2005, Angola experienced its first epidemic near the border with the Democratic Republic of Congo. The balance was 252 cases including 227 deaths [11]. It is still the most important Marburg virus outbreak to date. The last appearance of the Marburg virus was in Uganda in October 2014, with only one confirmed case reported near the capital Kampala. Two exported cases were reported among travelers returning from Uganda, one in the Netherlands (2008), the other in the USA (2008) [12,13].
Marburg reservoir host
Previous studies detected antibodies against Marburg virus in the serum of only one of ten species caught. It is the Egyptian flying fox (Roussettus aegyptiacus), a migratory frugivorous bat whose range includes the whole of the African continent south of the tropic of cancer. In addition, the search for fragments of the viral genome carried out on 283 specimens of Roussettus aegyptiacus showed that the liver and spleen of four of them contained RNA sequences belonging to 3 different genes of the Marburg virus. The serum of three of these four specimens also contains antibodies specific for Marburg virus. The simultaneous presence of specific antibodies against both viruses and viral RNA fragments strongly suggest that this bat species carries the virus but does not develop the symptoms, pointing to Egypt’s flying fox as the natural reservoir of this virus [14,15].
Clinic
At the onset of the disease, non-specific symptoms resemble those of influenza or malaria. Three to fourteen days after infection (incubation time), the disease suddenly starts with high fever, chills, extreme fatigue, headache, nausea, vomiting and diarrhea [3,4]. Weight loss, abdominal, muscular and joint pain, and breathing difficulties are some of the observed common symptoms.
After this first phase, Marburg fever may cause haemorrhage, i.e., characteristic bleeding such as vomiting of blood, hemorrhage in the gums, nosebleeds, petechiae (small spots on the surface of the skin or mucous membranes due to rupture of blood capillaries). The patient’s condition deteriorates sharply as the disease progresses; it can cause jaundice, pancreatitis, delirium, shock, liver or multiple organ failure (multi-organ failure). The mortality rate is high and ranges between 25 and 80%.
Diagnostic
Samples taken from patients are extremely bio hazardous; laboratory tests carried out on samples that have not been inactivated must be carried out under maximum biological confinement conditions. All biological samples must be protected in triple packaging when transported in the country and abroad. In practice, Polymerase Chain Reaction (PCR) is the most reliable and fastest method of detection in an emergency setting. Indeed, viremia (appearance of the virus in the blood) occurs as soon as the symptoms appear, thus making it possible to detect the viral genome [16]. The first clinical signs of Marburg disease are similar to those of several endemic diseases in Africa such as malaria, typhoid fever or Lassa fever, which can make diagnosis difficult, especially in an isolated case.
Transmission
The virus is transmitted from animals to humans or from person to person. In the first case, transmission is by contact with bats or monkeys, or their bodily secretions [14,17]. Since the virus is difficult to pass from one person to another, human-to-human contamination is rare. Transmission is possible following close contact with an infected person, such as blood, feces, vomit, urine, saliva or semen [3]. Note that an infected person remains contagious after his death. It is important to note that manipulation error or non-compliance with safety conditions when handling the virus in the laboratory has been described as causing human contamination in Russia in 1990 [18].
Prevention
There is no vaccine against Marburg virus disease or specific treatment. The main prevention measures focus mainly on avoiding direct contact with blood, saliva, vomiting, urine, or other body fluids from people with Marburg virus disease and avoid close contact with potential vectors, dead or alive, as both can spread the virus.
Conclusions
In the future, the results of this research should allow better delineation geographical areas potentially concerned by the presence of the Marburg virus, extending it to include West Africa, which is an important migratory region for fruit bats from Egypt. The identification of the natural reservoir of this virus should also foster the development health measures and prevention campaigns to the population to reduce the apparition and emergence of potential outbreaks of hemorrhagic fever.
References
- Martini GA (1973) Marburg virus disease. Postgrad Med J 49: 542-546.
- Peterson AT, Holder MT (2012) Phylogenetic assessment of filoviruses: how many lineages of Marburg virus? Ecol evol 2: 1826-1833.
- Brauburger K, Hume AJ, Muhlberger E, Olejnik J (2012) Forty-five years of Marburg virus research. Viruses 4: 1878-1927.
- Leroy E, Baize S, Gonzalez JP (2011) Ebola and Marburg hemorrhagic fever viruses: update on filovirusesMedecine tropicale: revue du Corps de sante colonial 71: 111-121.
- Gear JS, Cassel GA, Gear AJ, Trappler B, Clausen L, et al. (1975) Outbreake of Marburg virus disease in Johannesburg. Bmj Brit Med J 4: 489-493.
- Smith DH, Isaacson M, Johnson KM, Bagshawe A, Johnson BK, et al. (1982) Marburg-virus disease in Kenya. The Lancet 319: 816-820.
- Johnson ED, Johnson BK, Silverstein D, Tukei P, Geisbert TW, et al. (1996) Characterization of a new Marburg virus isolated from a 1987 fatal case in Kenya. Archives of virology Supplementum 11: 101-114.
- Adjemian J, Farnon EC, Tschioko F, Wamala JF, Byaruhanga E, et al. (2011) Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007.J Infect Dis. 204 Suppl 3: S796-799.
- Albarino CG, Shoemaker T, Khristova ML, Wamala JF, Muyembe JJ, et al. (2013) Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012. Virology 442: 97-100.
- Bausch DG, Nichol ST, Muyembe-Tamfum JJ, Borchert M, Rollin PE, et al. (2006) Marburg hemorrhagic fever associated with multiple genetic lineages of virus. New England J Med 355: 909-919.
- Towner JS, Khristova ML, Sealy TK, Vincent MJ, Erickson BR, et al. (2006) Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. Journal of virology 80: 6497-6516.
- Fujita N, Miller A, Miller G, Gershman K, Gallagher N, et al. (2009) Imported case of Marburg hemorrhagic fever-Colorado, 2008. Morbidity and Mortality Weekly Report 58: 1377-1381.
- Timen A, Koopmans MP, Vossen AC, van Doornum GJ, Gunther S, et al. (2009) Response to imported case of Marburg hemorrhagic fever, the Netherland. Emerg Infect Dis 15: 1171-1175.
- Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA, et al. (2007) Studies of reservoir hosts for Marburg virus. Emerg Infect Dis 13:1847-1851.
- Towner JS, Pourrut X, Albarino CG, Nkogue CN, Bird BH, et al. (2007) Marburg virus infection detected in a common African bat. PloS one 2: e764.
- Kortepeter MG, Bausch DG, Bray M (2011) Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis 204 Suppl 3: S810-816.
- Martini GA, Schmidt HA (1968) Spermatogenic transmission of the "Marburg virus". (Causes of "Marburg simian disease"). Klinische Wochenschrift 46: 398-400.
- Nikiforov VV, Turovskii IU, Kalinin PP, Akinfeeva LA, Katkova LR, et al. (1994) A case of a laboratory infection with Marburg fever. Zhurnal mikrobiologii, epidemiologii, i immunobiologii 1994: 104-106.