
A SCITECHNOL JOURNALCase Study

Jandrisevits C and Marschallinger R, Geoinfor Geostat: An Overview 2024, 12:6 Geoinformatics & 
Geostatistics: An 
Overview

All articles published in Geoinformatics & Geostatistics: An Overview are the property of SciTechnol and is protected by
copyright laws. Copyright © 2024, SciTechnol, All Rights Reserved.International Publisher of Science, 

Technology and Medicine

*Corresponding Author: Carmen Jandrisevits, Department of Geoinformatics, University of 
Salzburg, Salzburg, Austria; E-mail: carmen.jandrisevits@stud.plus.ac.at

Received date: 10 November, 2024, Manuscript No. GIGS-24-152146;

Editor Assigned date: 12 November, 2024, PreQC No. GIGS-24-152146 (PQ);

Reviewed date: 26 November, 2024, QC No. GIGS-24-152146;

Revised date: 03 December, 2024, Manuscript No. GIGS-24-152146 (R);

Published date: 10 December, 2024, DOI: 10 .4172/2327-4581.1000421.

The Influence of Secondary Data 
Integration on Multiple Point 
Geo-Statistical Simulation: A 
Case Study in the Upper Salzach 
Valley, Austria
Carmen Jandrisevits* and Robert Marschallinger

Department of Geoinformatics, University of Salzburg, Salzburg, Austria

Abstract

Multiple-point geostatistical simulation has recently become 
popular in stochastic hydrogeology, primarily because of 
its capability to derive geologically reasonable patterns and 
multivariate distributions from a training image and conditioning 
training image data to multiple hard and soft data sources. This 
article resents, evaluates and contrasts the results of using multiple-
point geostatistical simulation for producing geologically realistic 
models of a Quaternary inner-alpine aquifer. Borehole data, 
expert-designed geological profiles and training image data were 
subject to conditional simulation with the Single Normal Equation 
Simulation (SNESIM) algorithm, one of the most widely used 
Matrix Product State (MPS) algorithms. The sensitivity of model 
predictions to the training image and hard as well as soft data input 
was evaluated. Modeling results indicate that soft conditioning in 
MPS is a convenient and efficient way for integrating secondary 
data such as geological expert drawings.

Keywords: Multiple point statistics; Secondary data integration; 
Aquifer heterogeneity; Quaternary over-deepened alpine basin.

based two-point geostatistics and multiple-point geostatistics have 
been widely used to describe subsurface heterogeneity [1-3]. Two-
point geostatistics have limitations in reproducing the complex 
curvilinear shapes encountered in sediment associations like 
Quaternary aquifers. Instead of using mere two-point statistics from a 
variogram model, the MPS approach borrows multiple-point statistics 
from a Training Image (TI), which can be regarded as a conceptual 
model of the involved geological structures. Initially, MPS algorithms 
generated geologically realistic realizations by using the TI to obtain 
conditional probabilities needed in a stochastic simulation framework 
[2]. More recent pattern-based geostatistical algorithms attempt 
to improve accuracy and efficiency of TI pattern reproduction by 
abstracting TI contents into a pattern database. Sequential simulation 
is then carried out by selecting the most probable pattern chunks 
from this database and pasting them onto the simulation grid. The 
MPS algorithm SNESIM (Single Normal Equation Simulation), 
which uses a categorical variable TI, was proposed by [3]. SNESIM 
enables two-dimensional (2D) or three-dimensional (3D) simulation, 
necessitating a 2D or 3D TI. The construction of a 3D TI for MPS 
is not straightforward, since most geological investigations-with 
the exception of 3D geophysics-do not deliver volumetric data but 
merely surface-related observations like mapping, profile sections, or 
3D point observations such as borehole data [4]. Currently, object-
based simulation is popular for creating 3D TIs since TIs need not 
be conditional to data, but must only represent the typical geometric 
shapes of involved geo-objects and the spatial relationships between 
them [5,6]. MPS can be conditioned to hard data like drillings and 
to soft data such as geophysical data or expert-derived geological 
sections. Another advantage of MPS is the ability to incorporate 
multiple sources of data [7-10]. This paper highlights reproducing 
the heterogeneity of aquifer sediments by means of the SNESIM 
algorithm. SNESIM was used to model the shallow aquifer structures 
of a Quaternary over-deepened alpine basin in the Upper Salzach 
Valley, Austria. Aquifer models were simulated conditioned to hard 
data from drillings, but also fully conditional realizations, both with 
hard and soft data, were run. Expert-created geological sketches 
served as secondary soft data. The influence of secondary data 
integration on simulation results was evaluated.
Study area and database

The study area is located in the Upper Salzach valley, Zell 
region and covers an area of 3 km × 2 km (Figure 1). Geological 
investigation suggests a highly heterogeneous sedimentary infill 
of fluvial and lacustrine origin with variable vertical and lateral 
extents indicating diversified aquifer structures. Investigation data 
are sparse and comprise drillings, 2D geophysical exploration data 
and geological sketches. There are 56 drillings with variable drilling 
depths from 5 m-50 m, whereby only 10 groundwater wells reach 
a depth of 50 m. Regarding assumed hydrological parameters, 
sediments were categorized in three classes: Gravel, Sand and Silt/
Clay. Borehole descriptions and geological sketches were categorized 
accordingly. Input data were discretized and simulated into a 3D grid 
with SNESIM. For a subarea (200 m × 200 m), a grid dimension of 1 
m × 1 m × 0.2 m was chosen. The subarea was discretized with a cell 
size of 15 m × 15 m × 0.5 m.

Introduction 
Aquifer heterogeneity poses challenges to hydrogeological 

modeling. Due to limited available data, it is essential to integrate 
all relevant, usually multi-source information in order to reduce 
the uncertainty in aquifer models and flow predictions. Various 
geostatistical modeling/simulation approaches have been developed 
over the past 50 years to assess spatial uncertainty due to interpolation 
or simulation of observed input variables. In hydrology, variogram-
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Figure 1: Location of the study area and the investigation subarea 
in the upper Salzach valley drained by the Salzach river in Austria. 
Orthoimagery and Digital Elevation Model were obtained from an 
internet source.
Case Representation

The theory of Multiple-Point geostatistics was developed over 
the past three decades as a powerful method for deriving realistic 
geostatistical models with complex structures. Today, MPS is widely 
used in a variety of geoscience fields, including but not limited to 
reservoir modeling [11-12], hydrology and geological modeling [13-
15].
Using the single normal equation simulation (SNESIM) 
algorithm for multiple point statistical (MPS) simulation

The primary advantage of MPS is its capability to capture multiple-
point based structure information instead of using two-point-based 
statistics yielded by variography [16]. The database from which the 
structural information is retrieved is referred to as TI. In the present 
context, a TI is any categorical 2D or 3D image which contains the 
geological conceptualization of the target variable [17]. It is not a 
subsurface model itself, but a quantitative conceptual depiction of it. 
The user chooses the TI based on his/her prior understanding of the 
local hydrogeological system. The TI does not necessarily provide 
locally accurate information; i.e., there is no need to contain the 
actual georeferenced positions of the hydrostratigraphic architecture, 
just the general patterns. The TI needs to reflect a prior geological 
or structural concept containing geologically realistic and relevant 
information, however [12,18]. It is a tool to identify the dominant 
patterns and their variation. TI production is a most important stage 
of the simulation process since the output critically depends on it. 
A TI can be produced using different methods and available data 
sources. 19. Comunian A et al., pointed out that while a 3D TI is 
necessary for 3D MPS simulation, it is not trivial to generate a 3D TI 
since geological observations generally only provide 2D information 
[19]. Hence, 3D simulation is an important challenge for MPS [4]. 
Okabe H et al., as well as Okabe H et al., generated 3D TI realizations 
by applying information from lateral 2D images on orthogonal 
directions [11,20]. Coz et al., built a 3D TI by successively replicating 
a single 2D TI. These “copy and paste” methods are simple but 
certain assumptions need to be invoked [13]. Other methods include 
complicated statistical simulations such as described by Comunian 
et al., [21]. They used probability aggregation approaches to retrieve 
statistical information from 2D TIs which subsequently were applied 
to simulate a 3D TI. Maharaja A et al., proposed a simple object-

based algorithm, TI generator, to generate parametric images [22]. 
However, an image purely generated by stochastic methods lacks 
evidence from geological observations and its application in MPS 
can be questioned. He et al., generated two kinds of 3D training 
images; One TI was generated by direct conversion from SkyTEM 
data and the other training image was developed by the TI generator 
implemented in SGeMS [23]. Hoyer et al., constructed a 3D TI 
based on the well-known geology and used different types of input 
data for MPS simulation. In this study, the object-based TI generator 
Tetris was used for Training Image production [14,24]. The SNESIM 
algorithm combines the flexibility of pixel-based algorithms and the 
ability to reproduce crisp shapes of object-based algorithms. Of note, 
SNESIM simulations can be run on standard hardware with reasonable 
computing power. The critical step of sequential simulation is the 
Conditional Probability Distribution Function (CPDF). The SNESIM 
algorithm is based on the following equation:

( ) ( ) ( ) n

n

P(U | ) {S | S } (d );S Prob
(d )k k kaan kSu cS U

c
= = = ≅  …… (1)

This solution is achieved by scanning a TI by a template consisting 
of n+1 nodes that is centered at location U, the values c (dn) and ck 
(dn) are recorded while scanning the TI. dn denotes the data event of 
all n surrounding nodes. c (dn) denotes the number of replicates of 
the conditioning data event dn =(S(Ua)=Ska, a=1,···,n) and ck (dn) 
denotes that among those c (dn) replicates, the number of replicates 
with the central node U has the value S(U)=Sk. The equation above 
implies that the probability of state Sk to occur at location 1 with 
n neighbor data is equal to the training proportion ck (dn)/c (dn). 
These training probability values are stored in a search tree a prior 
to simulation. With the possession of cpdf, the sequential simulation 
paradigm is used in stochastic simulation [25]. The hard data is first 
assigned to the closest grid nodes and all the unknown grid points 
are visited once and only once in a random path. At each unknown 
location U, the recorded cpdf corresponding to actually present hard 
conditioning data event is retrieved and is used to draw the simulated 
value S at this location.
Training Image (TI) construction

Different scenarios of MPS simulations were designed with 
different combinations of TI and soft data to provide evidence of 
MPS applicability. The TI includes geometries of the three classified 
sediment groups and inherently contains erosion relations. The TI 
size is 127 m × 67 m × 4.4 m (X × Y × Z) with a spatial resolution 
of 1 m × 1 m × 0.2 m. Figure 2 is an oblique, semi- transparent view 
of the TI, exposing its internal structure: A matrix of sand sediments 
(orange color) holds intercalated silt-clay ponds (green color), all cut 
by gravel channels (yellow color) (Figure 2).
Soft data conditioning

Another advantage of MPS is the ability to incorporate multiple 
sources of data [8,9,26]. Comunian A et al., concluded that the 
sensitivity of the model predictions to the training image is a central 
topic of further research [21]. Accompanying TI information, soft 
data (e.g., geophysical data, geological sketches) can be included 
for constraining MPS simulations, resulting in realizations that also 
honor real-world regional geology. Soft data or secondary data relate 
to indirect information on the distribution of geological facies. Typical 
soft data include geophysical data such as seismics or geoelectrics. 
The integration of soft data for constraining the simulations is 
achieved by the so-called tau model. Here, the continuous soft data 
variable needs to be translated into a probability grid, describing the 
probability of finding a given geological unit based on the secondary 
data [27]. In order to guarantee the reproduction of geological 
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patterns at all scales, SNESIM uses the multiple-grid formulation, 
presented by [28]. To enable integration in SNESIM, soft data first 
have to be converted into facies probability data. If n is the facies 
indicator value at location u, then P(A) is the facies global proportion 
or prior probability in Bayesian statistical terms. B infers to data event 
from training image. Then P(S(U)=Sk|dn)) in Eq.1 can be rewritten 
as PA|B. Let C represent the additional soft information, then PA|C 
denotes the probability derived from soft data. Derived a Bayesian-
based model of integrating PA|B and PA|C [29].

 .

T

T T

a
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 s[0,1] ……(2)
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The parameter τ is used to adjust the contribution of soft 
information C. τ=1 indicates independence of contribution of data 
C from data B. For τ=0, the soft information is ignored, while for τ 
> 1, the influence of soft data C is increased and it is decreased for τ 
< 1. The two weights τ1 and τ2 account for information redundancy 
between the closest prototype prob(u) and the local soft data event 
sdev(u), respectively. The default values are τ1=τ2=1 [30,31].
Geological profile construction

In this study, geological expert knowledge was combined with 
borehole data to draw 2D geological sketches which were later 

incorporated as soft data in SNESIM. Based on classified drilling logs 
from nine drill holes within the zone of the subarea, a geologically 
possible and probable scenario of the sedimentary structure was 
developed. The scenario represents a situation in a typical foreland 
region of a melting glacier. For the scenario, three cross sections in 
SW-NE-direction (A-A’, C-C’, D-D’) and one in SE-NW-direction 
(B-B’) were constructed between drill holes, obeying consistency at 
the intercept points of cross sections. Figure 3 gives the location of 
the cross sections.

For consistency, identical categorization was applied to cross-
sections as to hard data from drilling logs: Three classes of lithologies 
were distinguished-gravel (yellow), sand (orange) and silt and clay 
(green). The top-most meters in the southern, southwestern and central 
parts of the study area are dominated by sedimentation of silt and clay 
due to a lacustrine environment as the youngest sedimentation process. 
In the north and northeast, sandy layers dominate the uppermost 
horizons and delineate the lake to the north. In the middle part (one to 
seven meters below the surface), the dominating component is sand, 
interspersed by layers of clay and gravel. 

This indicates generally moderate flow velocities with seasonal 
variations (snowmelt in spring, low flow conditions in autumn and 
winter). The deepest part is dominated by gravel in the central, 
southern and eastern areas, while sand is the most frequent component 
in the western and northern areas. This can be interpreted as a flow 
channel crossing the study area in the south and southeast. Figure 4 
shows the geological cross-sections.

Above 2D sections were constructed with CAD software 
and exported as ASCII files. Individual ASCII ASCII files were 
combined in one GSlib file which facilitates the import in SGeMS 
v2 [32].

Figure 2: 3D view of the training image containing. Note: a) gravel ( ), ( ) and silt/clay ( ) sediments; b) visualizing only gravel channels  
( ); c) visualizing only silt/clay ponds ( ).
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Figure 3: Location of drillings (enlarged in the horizontal direction) and constructed cross-sections (gravel ( ), sand ( ) and  silt/clay ( )).

Figure 4: Schematic representation of geological cross-sections. Note: a) A’; b) B’; c) C’; d) D’ (gravel ( ), sand ( ) and silt/clay ( )).
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and Quaternary silt/clay. For soft data inclusion, the SNESIM 
algorithm requires probability data calibrated from soft data. To infer 
3D probability maps of a particular facies' occurrence at a specific 
grid point (voxel array), we used Indicator Kriging on one hand (F 
and Sequential Indicator Simulation on the other hand (Figures 5 
and 6). The probability of facies occurrence ranges from 0 (lowest 
probability, blue color) to 1 (highest probability, red color).

Results and Discussion
This section presents the results of different simulations 

conditioned to hard and soft data. Five different models with varying 
Tau values and servosystem factor values were analyzed. For a better 
comparison of the different models, 3D views of model cuts and tables 
including facies distribution, as well as histograms, are depicted. In 
the first approach, the most traditional one, borehole data were used 
as hard conditioning. One SNESIM realization conditioned only to 
hard data is shown in Figure 7. Here, SNESIM simulation effectively 
reproduces the depositional patterns provided by the TI and facies 
distribution around drillings, as well as facies connectivity distant 
from drillings, are simulated in a sedimentologically consistent 
manner (Figure 7).

The uncertainty in geological simulation models will decrease with 
additional data sources; however, it is not easy to reconcile various 
data because they have varying scales and spatial coverage. Secondary 
data typically have a larger scale than the modeling scale. In a second 
step, the impact of secondary data integration on simulation results 
in the investigation area was analyzed. Incorporating probability 
maps into SNESIM, a further set of facies realizations was generated. 
The histogram of soft data is shown in Figure 8. These realizations 
are conditioned not only to drill logs but also to geological soft data 
(derived from geological sections in Figure 9). 

Servosystem
The servosystem correction attracts the running simulated 

marginal probability toward the target probability at each moment 
of the sequential simulation process. Let Pc(A) be the probability of 
event A, calculated using the existing and simulated points before 
simulating point x. For simulating point x, instead of using the 
conditional probability P(AǀB) (eventually updated using the above 
Bayesian formula), a correction toward the target probability P × (A) 
is introduced by using

( ) ( ) ( ) n

n

P(U | ) {S | S } (d );S Prob
(d )k k kaan kSu cS U

c
= = = ≅ …… (3)

The degree of correction increases with the value of λ. P(A|B) may 
not necessarily honor the order relations. Similar to the sequential 
indicator simulation, a correction of order relations is applied to 
P(A|B) before simulation. Shows that increasing the value of λ can 
make the global statistics of a simulation closer to the target statistics, 
but at the cost of losing geometric features of the TI. This is because 
the marginal probability and the MP statistics are not decoupled. It 
is recommended that the target statistics should not be too different 
from that of the TI. This requires building training images that are 
representative both in terms of geometric features and global statistics 
[9].
Single Normal Equation Simulation (SNESIM) 
parameterization

Different scenarios of MPS simulations were designed with 
different combinations of TI and soft data to provide evidence of 
MPS applicability. The MPS simulation grid is 254 m × 134 m × 17 m 
(xyz), with xyz grid cell dimensions of 1 m × 1 m × 0.2 m, including 
the following three categories: Quaternary gravel, Quaternary sand 

Figure 5: Probability map for mentioned ones. Note: a) Gravel; b) Sand and c) Silt/clay facies obtained by Indicator Kriging (0=lowest 
probability ( ) to 1=highest probability ( )).
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Figure 6: Probability map for mentioned ones. Note: a) Gravel; b) Sand c) Silt/clay facies obtained by Sequential Indicator Simulation 
(0=lowest probability ( ) to 1=highest probability ( )).
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Figure 7: Location of drillings. Note: a) SNESIM realization with hard data only conditioning (xyz voxel size: 1 m × 1 m × 0.2 m);  (b) Same 
as Figure 7a, but sliced at z=745m to visualize internal structure; c) Histogram of the SNESIM realization in Figure 7a (gravel ( ), sand ( ) 
and silt/clay ( )).
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Figure 8: Histogram of soft data (cross sections).

Figure 9: Location of drillings. Note: a) SNESIM realization with hard and soft data conditioning with τ1=τ2=1, servosystem factor=0.9 
(voxel size: 1 m × 1 m × 0.2 m); b) same as Figure 9a, but sliced at z=745m to visualize internal structure; c) related histogram of the SNESIM 
realization in Figure 9a.

Figure 11, the channel structures have the highest sinuosity compared 
to previous SNESIM simulation models. Experimental results 
show that the structures simulated using both soft and hard data are 
most similar to those of the training image when IK is used for soft 
data input. When integrating secondary data first, it is important to 
properly account for data redundancy, which represents how closely 
secondary data are related to the primary data [33]. In the third step, 
facies in the 2D geological profiles were used as input for SISIM and 
the obtained 3D probability models were used as soft conditioning for 
SNESIM. The SISIM probability model input shown in Figure 6 for 
soft data conditioning with τ1=τ2=1, servosystem factor=0.9 (Figure 
12). Here, the geobodies of the sediment facies appear geologically 
unrealistic.

The SNESIM realization in Figure 9a, equal weights (τ1=τ2=1) 
were assigned to the soft data and training image. The servosystem 
factor was set to 0.9, the same as in the SNESIM realization conditioned 
only to hard data (Figure 7). The gravel bodies appear in a patchy, 
discontinuous form and silt/clay deposits are smaller compared to the 
model conditioned only to hard data. In Figure 10, different τ-values 
(τ1=1, τ2=0.5) were used, while the value of the servosystem factor 
was kept at 0.9. Reducing the weight of the secondary (soft) data, 
the channel structure of gravel facies is still visible in realization 
Figure 10, but with a shorter length and smaller width compared to 
the channels in the model without soft data conditioning. For the 
simulation of the model in Figure 11, the servosystem factor is set to 0 
and the weights (τ1=τ2=1) were assumed to be equal. In the realization 
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Figure 10: Location of drillings. Note: a) SNESIM realization with hard and soft data conditioning with τ1=1, τ2=0.5, servosystem factor=0.9 
(voxel size: 1 m × 1 m × 0.2 m); b) same as Figure 10a, but sliced at z=745 m to visualize internal structure; c) related histogram of the SNESIM 
realization in Figure 10a.



Citation: Jandrisevits C, Marschallinger R (2024) The Influence of Secondary Data Integration on Multiple Point Geo-Statistical Simulation: A Case Study in 
the Upper Salzach Valley, Austria. Geoinfor Geostat An Overview.12:6.

• Page 10 of 13 •Volume 12 • Issue 6 • 1000421

Figure 11: Location of drillings. Note: a) SNESIM realization with hard and soft data conditioning with τ1=τ2=1, servosystem factor=0 (voxel 
size: 1 m × 1 m × 0.2 m); b) same as Figure 11a, but sliced at z=745 m to visualize internal structure; c) related histogram of the SNESIM 
realization in Figure 11a.
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Figure 12: Location of drillings. Note: a) SNESIM realization with hard and soft data conditioning with τ1=τ2=1, servosystem factor=0 (voxel 
size: 1 m × 1 m × 0.2 m); b) same as Figure 12a, but sliced at z=745 m to visualize internal structure; c) related histogram of the SNESIM 
realization in Figure 12a.
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is a flexible and efficient method for building an ensemble of equally 
probable, geologically realistic realizations. This is especially 
important when only sparse primary data are available in complex and 
heterogeneous geological areas. For practitioners without a deeper 
understanding of the details of a given MPS method, simulation can 
be difficult to handle. Fine-tuning the weights of hard and soft data, 
or the number of candidate patterns in the pool, patch sizes, overlap 
region width, or weighting matrices can be challenging. To verify the 
reliability of the proposed geological sediment facies simulations in 
this study, groundwater flow modeling should be addressed in future 
research.
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Table 1 below depicts the facies proportions of input data and 
simulation realizations. According to hard data and soft data, the 
sand facies have the highest proportion, the gravel facies have the 
second highest proportion and the silt/clay facies have the smallest 
proportion (exception: Simulation 6). The gravel facies have the 
highest deviation (12 percent) compared to the hard data and soft data 
input.
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Table 3: The degree of differences between the epikarsts of the 
studied sample site pairs based on t-test values.

This study suggests that soft conditioning in MPS is a convenient 
and efficient way of integrating secondary data, such as 2-D 
geological profiles, but over-conditioning has to be avoided. It can 
result in realizations that both honor the input statistics and resemble 
real geology.

Conclusion
This paper described and applied multiple-point geostatistical 
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stochastic simulations were conducted using the SNESIM algorithm 
as implemented in SGeMS. The training image was constructed with 
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