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Abstract
The aim of this paper is to extend the applicability of an Ulm-Newton-
like method for approximating a solution of a nonlinear equation in 
a Ba-nach space setting. The su cient local convergence conditions 
are weaker than in earlier works leading to a larger radius of 
convergence and more precise error estimates on the distances 
involved. Numerical examples are also provided in this study. AMS 
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Moser [13] proposed the following Ulm’s-like method for 
generating a sequence fxng approximating x :

xn+1 = xn-BnF (xn),       Bn+1 = 2Bn-BnF ‘(xn)Bn.

Method (1.2) is useful when the derivative F 0(xn) is not 
continuously invertible (as in the case of small divisors [1-8, 10, 11, 
13-15]). Moser studied the semi-localpconvergence of method (1.2) 
and showed that the order of convergence is 1 + 2 if F 0(x?) 2 L(B2; 
B1p). However, the order of convergence is faster than the Secant 
method (i.e. 2). The quadratic convergence can be obtained if one uses 
Ulm’s method [14,15] 

xn+1 = xn   BnF (xn) 

Bn+1 = 2Bn   BnF 0(xn+1)Bn.

The semi-local convergence of method (1.3) has also been studied 
in [1-9]. As far as we know the local convergence analysis of methods 
(1.2) and (1.3) has not been given. In the present paper, we study the 
local convergence of the Ulm’s-like method de ned for each n = 0; ; 
2; 3; : : : by 

xn+1 = xn - BnF (xn ,) Bn+1 = 2Bn - BnAn+1Bn,

where An is an approximation of F’(xn). Notice that method (1.4) is 
inverse free, the computation of F0(xn) is not required and the method 
produces suc-cessive approximations {Bn} ≈ F’(x*)-1

In Section 2, we present the local convergence analysis of the 
method (1.4) and in Section 3, we present the numerical examples.

Local convergence analysis

The local convergence analysis of the method (1.4) is given in this 
section. Denote by U (v, ζ) the open and closed balls in B1, respectively, 
with center v ∈ B1 and of radius ζ>0.

Let w0 : [0,+ ∞] → [0,+ ∞] and w : [0,+ ∞] →[0,+ ∞] be continuous 
and nondecreasing functions satisfying w0 (0)= w(0)=0. 

Let also q ∈ [0,1] be a parameter. Define functions  ϕ and ψ on the 
interval [0,+ ∞]  by

1

0
0

( ) [ ( ( ) 1) ( )]t q w t d w t tφ θ θ= + +∫
and

( ) ( ) 1t tψ φ= −

We have that (0) 1ψ = − and for sufficiently large 0 0, ( ) 0t t tψ≥ > . By 
the intermediate value theorem equation ( ) 0tψ = has solutions in the 
interval (0, t0). Denote by the smallest such solution. Then, for each 

[0, ]t ρ∈ we have 

0 ( ) 1.tψ≤ <                                  (2.1)

We need to show an auxiliary perturbation result for method (1.4).

LEMMA 2.1 Let 1 2:F B BΩ ⊆ →  be a continuously 
Frechet-differentiable operator. Suppose that there exist 

* 2 1 0,{ } ( , ),{ },n nx M L B B q q R+∈ Ω ∈ ∈ , continuous and nondecreasing 
functions w0 : [0,+ ∞) → [0,+ ∞)and w: [0,+ ∞) → [0,+ ∞) such that for 
each , 0,1,2,..x n∈Ω = and [0,1]θ ∈

Introduction
In this study we are concerned with the problem of approximating 

a locally unique solution x of equation

F (x) = 0;                (1.1)

where, F is a Frechet{di erentiable operator de ned on a convex subset 
of a Banach space B1 with values in a Banach space B2.

A large number of problems in applied mathematics and also in 
engineering are solved by nding the solutions of certain equations. 
For example, dynamic systems are mathematically modeled by di 
erence or di erential equations, and their solutions usually represent 
the states of the systems. For the sake of sim-plicity, assume that a 
time{invariant system is driven by the equation x = R(x), for some 
suitable operator R, where x is the state. Then the equilibrium states 
are determined by solving equation (1.1). Similar equations are used in 
the case of discrete systems. The unknowns of engineering equations 
can be func-tions (di erence, di erential, and integral equations), 
vectors (systems of linear or nonlinear algebraic equations), or real or 
complex numbers (single algebraic equations with single unknowns). 
Except in special cases, the most commonly used solution methods 
are iterative{when starting from one or several initial approximations 
a sequence is constructed that converges to a solution of the equation. 
Iteration methods are also applied for solving optimization problems. 
In such cases, the iteration sequences converge to an optimal solution 
of the problem at hand. Since all of these methods have the same 
recursive structure, they can be introduced and discussed in a general 
framework [1-12]. 
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1
* * 2 1( ) 0, '( ) ( , ),F x F x L B B−= ∈

1
* * * * *|| '( ) '( ( )) '( )) || ( || ||),F x F x x x F x w x xθ θ− + − − ≤ −

1
* * *|| '( ) '( ) '( )) || ( || ||),F x F x F x w x xθ− − ≤ −

1 1
* *|| '( ) ( '( )) || || '( ) ( )) ||n n nF x A F x q F x F x− −− ≤  

that for each 0 *, : ( , ),nx x B x ρ∈Ω = Ω ∩

sup ,nq q≤

where 0n ≥

* 0( , ),nx B x r∈

and * 0( , ) ,B x r ⊆ Ω

where 0 (0, ).r ρ∈

Then, the following items hold
11

* * *0
|| '( ) '( ) || ( ( || ||) 1) || ) ||,n n nF x F x w x x d x xθ θ− ≤ − + −∫

11
* * *0

|| '( ) ( '( )] || ( ( || ||) 1) || ||,n n n nF x A F x q w x x d x xθ θ− − ≤ − + −∫
2 1( )nA L B B∈

And
1

*
*

1|| '( )) ||
1 (|| ||)n

n

A F x
x xφ

− ≤
− −

Proof we shall first show estimate (2.11) holds. Using (2.1), we 
have the identity

* * * * * *
1

* * *
0

'( ) ( ) ( ) ( ) ( ) '( )( ) '( )( )

[ '( ( )) '( )]( )

n n n n n

n n n

F x F x F x F x F x F x x x F x x x

F x x x F x x x dθ θ

= − = − − − + − =

+ − − −∫
(2.14)

Then, by (2.4) and (2.14) we have that 
1

1 1
* * * * * * *

0

1

* *0

|| '( ) ( ) || || '( ) [ '( ( )) '( )] || || || || ||

( ( || ||) 1) || ||,

n n n n

n n

F x F x F x F x x x F x d x x x x

w x x d x x

θ θ

θ θ

− −≤ + − − − + −

≤ − + −

∫

∫
which shows (2.10). Moreover, by (2.5), (2.6) and (2.10) we obtain 
that 

1
1 1

* * * *
0

|| '( ) [ '( )] || || '( ) ( ) || ( ( || ||) 1) || ||n n n n n nF x A F x q F x F x q w x x d x xθ θ− −− ≤ ≤ − + −∫
which shows the estimate (2.11). Furthermore, using (2.3), (2.4), 
(2.10), (2.11) and the definition of r0 we get that

1 1 1
* * * * *

*

0

|| '( ) [ '( )] || || '( ) [ '( ) || '( ) [ '( ) '( )] ||
(|| ||)
(| ) 1

n n n n

n

F x A F x F x A F x F x F x F x
x x
r

φ
φ

− − −− ≤ − + −

≤ −

≤ <

(2.15)

It follows from (2.15) and the Banach lemma on invertible 
operators [1, 4, 6, 11] that (2.12) and (2.13) hold.

REMARK 2.2 In earlier studies the Lipschitz condition [1-15]
1

* 1|| '( ) [ '( ) '( )] || (|| ||)F x F x F y w x y− − ≤ −  for each x,y, ∈ Ω              (2.16)

is used which is stronger than our conditions (2.3) and (2.4). Notice 
also that since 0 ,Ω ⊆ Ω

1( ) ( )w t w t≤                                        (2.17)

and

0 1( ) ( ),w t w t≤                             (2.18)

where functions w1 is as function w but defined on  Ω instead of  
Ω0.The ratio 0

1

w
w

 can be arbitrarily large [1, 4, 6]. Moreover, if (2.16) 

is used instead of (2.3) and (2.4) in the proof of Lemma 2.1, then 
the conclusions hold provided that r0 is replaced by r1 which is the 
smallest positive solution of equation

1( ) 0,tψ =                            (2.19)

where 1 1( ) ( ) 1t tφ φ= −  and ( )1
1 0 1 1( ) ( ) 1 ( )t q w t d w t tφ θ θ = + + ∫  it follows

from (2.10), (2.17), (2.18), (2.19) that

1 0r r≤

Furthermore, strict inequality holds in (2.20), if (2.17) or (2.18) 
hold as strict

Inequalities. Finally, estimates (2.11) and (2.12) are tighter than 
the corre-

sponding ones (using (2.16)) given by

[ ]
11

* 1 * *0
( ) ( ) ( ( ) 1) .n n n nF x A F x q w x x d x xθ θ−′ ′− ≤ − + −∫

Let λ be a parameter satisfying be a continuous and no decreasing 
function. 

[0,1]
[(0, ) [0, ), [0, ) [0, ), :[0, ) [0, ) :p p f p andg
λ

β β
∈

→ ∞ → ∞ → ∞

Moreover, define functions 

1

00

1

20

1[(0, ) [0, ), ( ) , ( ) 2 (1
1 ( )

( ) ) 2 ( ), ( ) ) ( ) ( ) ( )

2 (1 2) ( ) (1 ) ) 1

p by t t q
t

w t d t w t f t t t g t

t w t d

α β
φ

θ θ α β λ

λ λ α θ θ

→ ∞ = = +
−

+ = − =

+ + − −

∫
∫

( ) ( )

1 * * * 0 1 *

0 * 0 0

, : (1 1 )

(1 ( ) ) ( )

),

k k k

k k k

q w x x d
x x

x x q w x x d x x w x x

w x x d

α β θ θ

θ θ+ +

= = + + −
− −

− + + − − + −

+ − =

∫

∫

2 2 2
1 12k K K K K k k k k kI B A I B A A A B A Aγ + += − + − − + −

Parameters α,β by 0 0( ), ( )r rα α β β= =  and quadratic equatio
2 2 2(1 ) 2 (1 ) ( ) 0.t tαβ αβ αβ αβ λ+ + + + − =  Then, we have  

(0) 0 ( )f andf t ast pλ= − < → ∞ →

    Denote byρ0  the smallest solution of equation  f(t)=0 in (0,p) 
tthen, we have

that for each t 0(0, )ρ∈

0 ( ) ( )t tα β λ< < .

In view of the above inequality the preceding quadratic equation 
has a unique positive solution denoted by ρ+ and a negative solution. 
Define parameter γ by

0 0 00 min{ , , }.rγ γ ρ ρ≤ ≤ = +

Then, we have that
2 2 2(1 ) 2 (1 ) ( ) .rαβ αβ αβ γ αβ λ+ + + + <

Notice that we also have that kα α≤ and kβ β≤ .

Next, we present the local convergence of method (1.4).
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THEOREM 2.3 Under the hypotheses of Lemma 2.1 and with 
r0 given in (2.9) for [0,1)λ ∈  further suppose there exists function 

2 0:[0, ) [0, )w r → +∞ continuous and no decreasing such that for each 

x *( , ) [0,1]ox B x r θ∈ ∈ and 

1
1 1

*

1 ( ).
1 ( )n

n

A r
x x

φ
φ

− ≤ <
− −

1
* * * 2 *( ) [ ( ( )) ( )] ((1 ) )F x F X x x F x w x xθ θ−′ ′ ′+ − − ≤ − −  for each 

0 * 0( , )x B x r∈ Ω = Ω ∩ ,

2
0 0 0I B A d λ− ≤ <  and

*( , )B X γ ⊆ Ω

where γ  is given in (2.22). Then, sequence { }nx  generated by the 
method (1.4) for 0 * *( , ) { }x B x x∈ − is well defined , remains in

*( , )B x γ  and converges to x*

Proof. We have by hypothesis (2.25) that 
2

0 0 0I B A d λ− ≤ < so  
2

K K kI B A γ λ− ≤ <

is true for k = 0: Suppose that (2.27) is true for all integers smaller or 
equal to k: Using Lemma 2.1, we have the estimate

1 1 1
K K K K K K K KB B A A B A A A− − −= ≤

1(1 )K K KI B A A −≤ + −

( )
*

1(1 ) 1
1 ( )k k k

kx x
γ γ α

φ
≤ + ≤ +

− −

In view of method (1.4) for n = k; we can write in turn that 
1

* 1( ) ( ) )k KF x A A−
+′ −

1
* 1 1( ) ( ) ( ))k KF x A F x−

+ +′ ′≤ −

+
1 1

* 1 * *( ) ( ( ) ( )) ( ) ( ( ))K K kF x F x F x F x A F x− −
+′ ′ ′ ′ ′− + −

1 1
* 1 1 *( ) ( ) ( )) ( ) ( ( ))k K k KF x A F x F x A F x− −

+ +′ ′ ′ ′≤ − + −

1 1
* 1 * * *( ) ( ( ) ( ) ( ) ( ( ) ( ))K KF x F x F x F x F x F x− −

+′ ′ ′ ′ ′ ′+ − + −

1 1
* 1 1 * 1 *( ) ( ) ( ) ( ) ( ( ))k K k K KF x A F x F x A F x x x− −

+ + +′ ′ ′ ′≤ − + − + −

1

1 * 1 *0
(1 ( ) )k kq w x x d x xθ θ+ +≤ + − −∫

1

* 1 *0
(1 ( ) )k kq w x x d x xθ θ ++ + − −∫
0 * 0 *( ) ( )k kw x x w x x+ − + −

Kβ β≤ ≤

By the definition of method (1.4), we have the estimate

I-Bk+1Ak+1= I-(2Bk-BkAk+1Bk)Ak+1= (1-BkAk+1)
2 

Then, by (2.32), (2.29) for n = k; we get in turn that

||I-Bk+1Ak+1|| ≤ (||I-BkAk||+||Bk||||Ak+1-Ak||)
2

≤ (||I-BkAk||
2+2||1-BkAk||||Bk||||Ak +1-Ak||+||Bk||

2||Ak +1-Ak||
2

2 1
1

2 1 2 2
1

2 2 2 2

2 2 2 2

2 2 2 2 2

2 (1 ) || |||| ||

(1 ) || || || ||

2 (1 ) (1 )

(1 ) 2 (1 )

1 ) 2 (1 )

k k k k

k k k

k

k k k

k k A A A

k A A A

k k k

k

γ γ γ

γ

γ γ γ αβ γ α β

αβ γ αβ αβ γ α β

αβ γ αβ αβ γ α β λ

−
+

−
+

+ + −

+ + −

≤ + + + +

= + + + +

≤ + + + + <

which shows (2.27) for n = k +1: Then, using the induction hypotheses, 
(2.24), and the definition of γ

||xk+1-x*||≤ (λ2 + (1+λ2)α|| xk- x*||

* *

1

20
((1 ) || || | || |k kx x d x xω θ θ− −× −∫

<g(γ)|| xk- x*||≤ g(ρ+)||xk- x*||c||xk- x*||,

where c = g[0,1], so limk→∞ xk= x* and xk+1∈ B(x*,ρ)

REMARK 2.4 (a) As noted in Remark 2.2 conditions (2.4) and 
(2.5) can be replaced by (2.24).

* * * *
1

3|| ( ( ( )) ( ((1 ) ||) [ )] || ||)x x x xF F x F x xθ ω θ−′ ′ ′ − −≤− −+  (2.36)

for each x∈Ω and θ ∈[0,1], where function ω3 is as ω1:

We have that ω1 (t)≤ ω3 (t). Then, in view of Remark 2.2 and (2.24) 
the radii of convergence as well as the error bounds are improved 
under the new approach, since old approaches use only (2.36) with 
the exception of our approach in [2, 5].

The results obtained here can be used for operators F satisfying 
autonomous differential equations [1, 4, 6, 11] of the form

F′(x) = P(F(x))

Where :P →� � is a continuous operator. Then, since F′(x*)= 
P(F(x*))= P(0), we can apply the results without actually knowing x* 
For example, let F(x) =ex-1. Then, we can choose P(x) = x + 1

(c) The local results obtained here can be used for projection 
methods such as the Arnoldi’s method, the generalized minimum 
residual method (GM-RES), the generalized conjugate method (GCR) 
for combined Newton/finite projection methods and in connection to 
the mesh independence principle can be used to develop the cheapest 
and most efficient mesh refinement strategies [1,4,6].

(d) Let L0, L, L1, L2, L3 be positive constants. Researchers, choose 
ω0(t)= L0t, ω(t)= Lt, ω1(t)= L1t, ω2(t)= L2t, and ω3(t)= L3t, Moreover, 
if we choose Ω0=Ω and L=L1 then, our results reduce to the ones 
given by where the second order of convergence was shown with the 
Lipschitz conditions given in non-affine invariant form. In Example 
3.1, we shall show that the radii are extended and the upper bounds 
on ||xn- x*|| are tighter if we use ω0, ω, ω2 instead of using ω0 and ω we 
used in [5] or only ω3 as used in [2,7-15].

Numerical examples

Example 3.1 let 3 *, (0,1), (0,0,0)TX D U x= = =�  Define 
function F on D for ω=(x,y,z)T by

2( ) (e 11, , )
2

x Te y yF zω −
− +=

Then, the Frechet-derivative is defined by

e 0 0
( ) 0 ( 1) 1 0

0 0 1

x

F e yυ
 
 ′ = − + 
  

Notice that using the Lipschitz conditions, we get ω0(t)= L0t, (t)= 
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Lt, ω1(t)= L1t, ω2(t)= L2t, and ω3(t)= L3t, where L0= L = e-1, L1= L3=e 

and L2= 0

1

eL  Moreover, choose An=
1
2

 F′(xn) to obtain qn=q= 1
2

 

The parameters are 1 10.5758, 0.4739, 0.5499, 0.4739r rρ ρ= = = =

where the bar answers corresponding to the case when only ω3 is used 
in the derivation of the radii.

Example 3.2 Let  
1mX Y −= = � for natural integer 

2n ≥  X and Y are equipped with the max-norm x = max1≤i≤n-
1xi

 .The corresponding matrix norm is
1

1 1 1
max | |

j m

i m j
A aij

= −

≤ ≤ − =

= ∑
For A= (aij)1≤i≤m-1. On the interval [0; 1], we consider the 

following two point boundary value problem
2 0

(0) (1) 0
υ υ

υ υ
′′ + =


= =

              (3.1)

[6, 8, 9, 11]. To discretize the above equation, we divide the interval [0; 
1] into m equal parts with length of each part: h=1/m and coordinate 
of each point: xi=I h with i=0,1,2,…,m. A second-order finite 
difference discretization of equation (3.1) results in the following set 
of nonlinear equations

2 2
1 12

(v) :
1,2,...,(m 1)andfrom(3.1) 0

i i i i

o m

h
F

fori
υ υ υ υ

υ υ
− + + − += 

= − − =
          (3.2)

Where V= T
1 2 ( 1)[ , ,..., ]mυ υ υ − For the above system-of-nonlinear-

equations, we provide the Frechet derivative

1
2

2
2

3
2

( 1)
2

2 2 1 0 0 0 0

21 2 1 0 0 0

2(v) .0 1 2 1 0 0

2
0 0 0 0 1 2m

v
m

v
m

vF
m

v
m

−

 − 
 
 − 
 

′ =  − 
 
 
 

− 
 







    



We see that for 
9 ( )

10 nnA F x′=

ω0(t)=L0t, ω(t)=Lt, ω1(t)=L1t, ω2(t)=L2t, and ω3(t)=L3t, where 

L0=L=L1=L2=3, q= 1
10

 and 1
*

1|| ( ) ||
2

F x −′ =  The parameters are 

1 10.5478, 0.5478, 0.4762, 0.4762r rρ ρ= = = =

where the bar answers corresponding to the case when only ω3 is used 
in the derivation of the radii. 
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