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Abstract

In this short article, we present a new and simpler proof of
a characterization of the quadric constant mean curvature
hypersurfaces of the Euclidean sphere S™', originally due to Alias,
Brasil and Perdomo
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Introduction

In 2008, Alias, Brasil and Perdomo studied complete hypersurfaces

immersed in the unit Euclidean sphere $*' © R"*?, whose height and
angle functions with respect to a fixed nonzero vector of the Euclidean
space R"*?are linearly related. Let us recall that, for a fixed arbitrary
vector a € R"*? the height and the angle functions naturally attached
to a hypersurface y :>" — S""' endowed with an orientation v are
defined, respectively, by /, =(y,a)and f, = (V,a> . In this setting,
they showed the following characterization result concerning the
quadric constant mean curvature hypersurfaces of ™' [1,2]:

Theorem 1

Let y:Y" — S"" = R"" be a complete hypersurface immersed
in $™' with constant mean curvature. [ =\ f for some non-zero vector

a € R"*? and some real number A, then 3" is either a totally umbilical

hypersurface or a Clifford torus g« () x 5" ( h=p? ) ,for somek =0; 1;..;
n and some k=0,1,...,n and p>0.

Later on, working with a different approach of that used in [2], the
first and second authors characterized the totally umbilical and the
hyperbolic cylinders of the hyperbolic space H*"'as the only complete
hypersurfaces with constant mean curvature and whose support
functions with respect to a fixed nonzero vector a of the Lorentz-
Minkowski space are linearly related (see Theorem 4:1 of [3,4], for
the case that a is either space like or time like, and Theorem 4:2 of
[5], for the case that a is a nonzero null vector). In this short article,
our purpose is just to use a similar approach of that in [4,5] in order
to present a new and more simple proof of Theorem 1 (cf. Section 3).
For this, in Section 2 we recall some preliminaries facts concerning
hypersurfaces immersed in S**.
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Preliminaries

Let  : X" — S""' < R"" be an orientable hypersurface immersed
in the Euclidean sphere. We will denote by A the Weingarten operator
of X" with respect to a globally defined unit normal vector v.

In order to set up the notation, let us represent by v°, yand
V the Levi-Civita connections of R"?, §"*'and " respectively.
Then the Gauss and Weingarten formulas for ¥"in S"' are given,
respectively, by

VOY =V, Y+(AX.Y)v—(X,Y)y
and
AX =V, v=-V"y,

for all tangent vector fields X, Y *#(Z).

In what follows, we will work with the first three symmetric
elementary functions of the principal curvatures A ,... _of y, namely:

$=2 4,8, =2 A% and 5= 3 Aik
! i<j i<j<k
where i, j, k € {1,..., n}.

As before, for a fixed arbitrary vector a € R"*2 let us consider the
height and the angle functions naturally attached to which are defined,
respectively, by/ = (y/,u) and f, = (v,a), A direct computation
allows us to conclude that the gradient of such functions are given by
Vi, = a" and Vf, = _A(aT) , where " is the orthogonal projection
of a onto the tangent bundle TY, that is,

a'=a-fv-ly

Taking into account that VvV’ =0 and using Gauss and

Weingarten formulas, we obtain VA" = [ AX +1,X for all

X ex(M). We use this previous identity jointly with Codazzi
equation to deduce that

V, A@@)=f,AX +1,4X + (V  A(X),

For all that X € x(M). Thus according to [6] (see also [3]), it
follows from the last two identities that

Vi, =nHf, —nl, (2.1)

Vf,==|A[ f,+nHl,~n(VH,a"), 22)

where H = (1/n) S, is the mean curvature function of X"

For what follows, it is convenient to consider the so-called Newton
transformation

Bix(X) > =)

P=S-A
where I is the identity operator. Naturally associated with
the Newton transformation P, we have the Cheng-Yau’s

square operator [7], which is the second order linear di
erential operator o: D(2) — D(2) given by

o> h=tr(B o V’h) (2.4)

)
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Here V’h:%(Y)— (X)) stands for the self-adjoint linear
operator metrically equivalent to the hessian of h, and it is given by

(VXY )V (Vh). )
Forall X, YE*(X) .

Based on Reilly’s seminal paper [8-10], Rosenberg [6] showed the
following idenfitities related to the action of 00 on the functions / and f:

ol =2s,f, —(n—1)s, (2.5)
And
of, = (5,8, —38,)f, +2s,1, —<Vsz,aT> (2.6)

To close this section, we quote a suitable Simons-type formula
which can be found in [1] or [11].

os, = As,+ | Vs, [P +25,(| 4| —n) = sis, + 35,5, + (n=1)s]  (2.7)
Proof of Theorem

Now, we are in position to proceed with our alternative proof of
Theorem 1.1. If A=0 then la: }\fa:O, that is

a 1
<‘//(x)5a|> = m(‘//(x)’a> =0

for all x € 2" and, consequently, 5" is a totally umbilical sphere of
Sn+1'

So, let us assume that A#0. We have Al =AAf, and using the fact
that H is constant, from (2.1) and (2.2) we conclude that

nHf, —nl,==A| A" f, + AnHI,

Or equivalently,

S f, —nl, ==A(S? =28,)f, + AS,, ==AS} f, + 248, f, + AS|[,
Hence, we get that

S, f,—nl +AS>f =248, f,— A8, =0 (3.1)
By (3.1), we obtain

0=A(S,f, —nl, +AS} f, =248, f, = AS,L)
=S,(Af)—nAl, + AS(Af,)—2AS,(Af.,) = A*S|,
=S/, —nAl,+AS’l, —2A8,1,

=(S,—nA+AS’ -248,- A*S))l,

Thus,

(S, —nA+AS! —248,- A°S)I, =0

We define a function

h:2" - Rby

h(p): (S, —nA+AS? —248,- 2°S,)(p)

Suppose that h(p,)#0 for some p, € 3" Since h is smooth, there
exists a neighbourhood u of p, in 3" in which h(p)=0 all p€ u From
(3.2) we conclude that I =0 in u and, hence f =0 in u. since A#0. we
arrive at a contradiction because in 3" we have

VI, & +f, +l§ =lal’>0
Therefore, h = 0 on ¥, that is,

S, —nA+AS} —218,-17S,=0 (3.3)

Consequently, S, is constant on Y. Repeating the previous
argument for the operator L, and using the fact that S, is constant, we
also obtain that

28, = A(n—1)S, + 48,8, —318,- 225, =0 (34)

We observe that the above equation shows that S, is also constant
on X". We also note that this argument shows, in fact, that S, isa
constant function on X" for all 2<r<n. From (2.7) we get

VAP +28,(S} =28, —=n) = 5,(S,S, —3S;— (n—=1)S, =0
More precisely,

VAP +82S, —4S2 =218, +38,S,+(n—1)S? =0 (3.5)

We observe that if H=0, then S,=0 and, consequently,
From (3.3), we have 25, =—n and |A|* = n. Therefore, since

Al=-2s,

SALAP=n|AF - A +] VAP

We have that | V4 |2= 0 and, hence, from Theorem 4 of [9], we
conclude that " must be a Clifford torus

S*(p)x 8" F (1= p*), for some k=0,1,...,n and some p>0.
Now, suppose that H#0 By equation (3.4) we get

S,(2S,-A(n-1)S, + A8, —34S, —24%S,) = 0 (3.6)

that is,

28,S,-A(n-1)S? + 1SS, —34S,S, — 24°S;S,) = 0 (3.7)
From equation (3.5) we have

A| VA +AS}S, — 448} —2nAS, +3AS S, + A(n-1)S; =0 (3.8)

Furthermore, from a straightforward computation we can verify

that
A|VA 4288, +21S[S, —247SS, —448 -2n1S,=0  (3.9)

Hence, if S,= 0 we obtain of (3.9) that 1| V4 =0 consequently,
|VAP =0 and, since 3" is complete, it follows once more from Theorem

4 of [9] that X" must be a Clifford torus.
If S,#0 then 2S,.(S, —nA + AS] —248, — AS)) = 0 implies
2SS, —2nA8, +24S’S, — 4482 -247SS,) =0

We note that (3.10) and (3.9) imply 1| V4 [’=0and, hence,
repeating the previous argument we also get that X"is a Clifford
torus. Therefore, we conclude the proof of Theorem 1.

(3.10)
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