

Research and Reports on Mathematics

Short Communication a Scitechnol journal

A Simpler Proof of the Characterization of Quadric CMC Hypersurfaces in $Sⁿ⁺¹$

Aquino C[P1](#page-2-0) [*](#page-0-0) and De Lima H[F2](#page-2-1)

Abstract

In this short article, we present a new and simpler proof of a characterization of the quadric constant mean curvature hypersurfaces of the Euclidean sphere $Sⁿ⁺¹$, originally due to Alias, Brasil and Perdomo

Keywords

Euclidean sphere; Constant mean curvature hypersurfaces; Support functions; Totally umbilical hypersurfaces; Clifford torus

Introduction

In 2008, Alias, Brasil and Perdomo studied complete hypersurfaces immersed in the unit Euclidean sphere S^{n+1} ⊂ \mathbb{R}^{n+2} , whose height and angle functions with respect to a fixed nonzero vector of the Euclidean space \mathbb{R}^{n+2} are linearly related. Let us recall that, for a fixed arbitrary vector a $\in \mathbb{R}^{n+2}$ the height and the angle functions naturally attached to a hypersurface $\psi : \sum^n \to S^{n+1}$ endowed with an orientation v are defined, respectively, by $l_a = \langle \psi, a \rangle$ and $f_a = \langle \psi, a \rangle$. In this setting, they showed the following characterization result concerning the quadric constant mean curvature hypersurfaces of $S^{n+1}[1,2]$ $S^{n+1}[1,2]$ $S^{n+1}[1,2]$:

Theorem 1

Let $\psi : \sum^n \to S^{n+1} \subset \mathbb{R}^{n+2}$ be a complete hypersurface immersed in S^{n+1} with constant mean curvature. $l_a = \lambda f_a$ for some non-zero vector $a \in \mathbb{R}^{n+2}$ and some real number λ , then \sum^n is either a totally umbilical hypersurface or a Clifford torus $S^{\kappa}(\rho) \times S^{n-k}(\sqrt{1-\rho^2})$, for some k = 0; 1;..; n and some $k=0,1,...,n$ and $\rho > 0$.

Later on, working with a different approach of that used in [\[2](#page-1-3)], the first and second authors characterized the totally umbilical and the hyperbolic cylinders of the hyperbolic space H^{n+1} as the only complete hypersurfaces with constant mean curvature and whose support functions with respect to a fixed nonzero vector a of the Lorentz-Minkowski space are linearly related (see Theorem 4:1 of [\[3](#page-1-1)[,4\]](#page-1-4), for the case that a is either space like or time like, and Theorem 4:2 of [[5\]](#page-1-5), for the case that a is a nonzero null vector). In this short article, our purpose is just to use a similar approach of that in [[4](#page-1-4)[,5\]](#page-1-5) in order to present a new and more simple proof of Theorem 1 (cf. Section 3). For this, in Section 2 we recall some preliminaries facts concerning hypersurfaces immersed in $Sⁿ⁺¹$.

Received: August 10, 2017 **Accepted:** September 01, 2017 **Published:** September 07, 2017

All articles published in Research and Reports on Mathematics are the property of SciTechnol, and is protected by copyright laws. Copyright © 2017, SciTechnol, All Rights Reserved.

Preliminaries

Let $w : \sum^n \to S^{n+1} \subset \mathbb{R}^{n+2}$ be an orientable hypersurface immersed in the Euclidean sphere. We will denote by A the Weingarten operator of Σ ⁿ with respect to a globally defined unit normal vector ν.

In order to set up the notation, let us represent by ∇^0 , ∇ and ∇ the Levi-Civita connections of \mathbb{R}^{n+2} , S^{n+1} and Σ^n respectively. Then the Gauss and Weingarten formulas for Σ ⁿ in *S*^{*n*+1} are given, respectively, by

$$
\nabla_{X}^{0} Y = \nabla_{X} Y + \langle AX, Y \rangle V - \langle X, Y \rangle \psi
$$

and

$$
AX = -\overline{\nabla}_X \mathbf{v} = -\nabla^0{}_X \mathbf{v},
$$

for all tangent vector fields X, $Y \star (\Sigma)$.

In what follows, we will work with the first three symmetric elementary functions of the principal curvatures $\lambda_{1}, \ldots \lambda_{n}$ of ψ , namely:

$$
S_1 = \sum_i \lambda_i
$$
, $S_2 = \sum_{i < j} \lambda_i \lambda_j$ and $S_3 = \sum_{i < j < k} \lambda_i \lambda_j \lambda_k$

where *i*, *j*, $k \in \{1, ..., n\}$.

As before, for a fixed arbitrary vector $a \in \mathbb{R}^{n+2}$ let us consider the height and the angle functions naturally attached to which are defined, respectively, by $l_a = \langle \psi, a \rangle$ and $f_a = \langle v, a \rangle$. A direct computation allows us to conclude that the gradient of such functions are given by $\nabla l_a = a^{\text{T}}$ and $\nabla f_a = -A(a^{\text{T}})$, where a^{T} is the orthogonal projection of a onto the tangent bundle $T\Sigma$, that is,

$$
a^{\mathrm{T}} = a - f_a v - l_a \psi
$$

Taking into account that $\nabla^0 a = 0$ and using Gauss and Weingarten formulas, we obtain $\nabla_X \mathbf{A}(a^{\mathrm{T}}) = f_a A X + l_a X$ for all $X \in \mathcal{H}(M)$. We use this previous identity jointly with Codazzi equation to deduce that

$$
\nabla_X A(a^{\mathrm{T}}) = f_a A^2 X + l_a A X + (\nabla_{a^{\mathrm{T}}} A)(X),
$$

For all that $X \in \mathcal{H}(M)$. Thus according to [\[6\]](#page-1-0) (see also [[3](#page-1-1)]), it follows from the last two identities that

$$
\nabla l_a = nHf_a - n l_a \tag{2.1}
$$

$$
\nabla f_a = -|A|^2 f_a + nHl_a - n\langle \nabla H, a^{\mathrm{T}} \rangle, \qquad (2.2)
$$

where H = (1/n) S₁ is the mean curvature function of Σ ⁿ

For what follows, it is convenient to consider the so-called Newton transformation

$$
P_1: \star(\Sigma) \to \star(\Sigma)
$$

$$
P_1 = S_1 - A
$$

where *I* is the identity operator. Naturally associated with the Newton transformation P_1 , we have the Cheng-Yau's square operator [\[7](#page-2-2)], which is the second order linear di erential operator $\Box: D(\Sigma) \rightarrow D(\Sigma)$ given by

$$
\Box \to h = tr(P_1 \circ \nabla^2 h) \tag{2.4}
$$

^{*}Corresponding author: Aquino CP, Department of Mathematics, Universidade Federal do Piaui, Teresina, Brazil, Tel: (86) 3215-5525; E-mail: cicero.aquino@ufpi.edu.br

Here $\nabla^2 h : \mathcal{H}(\Sigma) \to \mathcal{H}(\Sigma)$ stands for the self-adjoint linear operator metrically equivalent to the hessian of *h*, and it is given by

$$
\left\langle \nabla^2 h(X), Y \right\rangle \left\langle \nabla_X (\nabla h), y \right\rangle
$$

For all X, $Y \in \mathcal{X}(\Sigma)$.

Based on Reilly's seminal paper [\[8-](#page-2-3)[10](#page-2-4)], Rosenberg [[6\]](#page-1-0) showed the following idenfitities related to the action of \Box on the functions l_a and f_a :

$$
\Box l_a = 2s_2 f_a - (n-1)s_1 l_a \tag{2.5}
$$

And

$$
\Box f_a = -(s_1 s_2 - 3s_3) f_a + 2s_2 l_a - \langle \nabla s_2, a^\dagger \rangle \tag{2.6}
$$

To close this section, we quote a suitable Simons-type formula which can be found in [[1](#page-1-2)] or [\[11](#page-2-5)].

$$
\Box s_1 = \Delta s_2 + |\nabla s_1|^2 + 2s_2(|A| - n) - s_1^2 s_2 + 3s_1 s_3 + (n - 1)s_1^2 \tag{2.7}
$$

Proof of Theorem

Now, we are in position to proceed with our alternative proof of Theorem 1.1. If λ =0 then $l_a = \lambda f_a = 0$, that is

$$
\left\langle \psi(x), \frac{a}{|a|} \right\rangle = \frac{1}{|a|} \langle \psi(x), a \rangle = 0
$$

for all $x \in \Sigma^n$ and, consequently, Σ^n is a totally umbilical sphere of S^{n+1} .

So, let us assume that λ≠0. We have ∆*l a =*λ∆*f ^a*and using the fact that H is constant, from (2.1) and (2.2) we conclude that

$$
nHf_a - nI_a = -\lambda |A|^2 f_a + \lambda nHl_a
$$

 22.2

Or equivalently,

$$
S_1 f_a - n l_a = -\lambda (S_1^2 - 2S_2) f_a + \lambda S_1 l_a = -\lambda S_1^2 f_a + 2\lambda S_2 f_a + \lambda S_1 l_a
$$

Hence, we get that

$$
S_1 f_a - n l_a + \lambda S_1^2 f_a - 2 \lambda S_2 f_a - \lambda S_1 l_a = 0
$$
\n(3.1)

By (3.1), we obtain

$$
0 = \lambda (S_1 f_a - n l_a + \lambda S_1^2 f_a - 2\lambda S_2 f_a - \lambda S_1 l_a)
$$

= $S_1 (\lambda f_a) - n \lambda l_a + \lambda S_1^2 (\lambda f_a) - 2\lambda S_2 (\lambda f_a) - \lambda^2 S_1 l_a$
= $S_1 l_a - n \lambda l_a + \lambda S_1^2 l_a - 2\lambda S_2 l_a$
= $(S_1 - n \lambda + \lambda S_1^2 - 2\lambda S_2 - \lambda^2 S_1) l_a$
Thus,
 $(S_1 - n \lambda + \lambda S_1^2 - 2\lambda S_2 - \lambda^2 S_1) l_a = 0$ (3.2)

We define a function

$$
h: \Sigma^n \to \mathbb{R} \text{ by}
$$

$$
h(p): (S_1 - n\lambda + \lambda S_1^2 - 2\lambda S_2 - \lambda^2 S_1)(p)
$$

Suppose that $h(p_0) \neq 0$ for some $p_0 \in \Sigma^n$ Since h is smooth, there exists a neighbourhood *u* of p_o in Σ^n in which $h(p) \neq 0$ all $p \in u$ From (3.2) we conclude that $l_a = 0$ in *u* and, hence $f_a = 0$ in *u*. since $\lambda \neq 0$. we arrive at a contradiction because in Σ^n we have

$$
|\nabla l_a|^2 + f_a + l_a^2 = |a|^2 > 0
$$

Therefore, $h = 0$ on $\Sigmaⁿ$, that is,

$$
S_1 - n\lambda + \lambda S_1^2 - 2\lambda S_2 - \lambda^2 S_1 \equiv 0
$$
\n(3.3)

Consequently, S_2 is constant on Σ^n . Repeating the previous argument for the operator L_1 and using the fact that S_2 is constant, we also obtain that

$$
2S_2 - \lambda(n-1)S_1 + \lambda S_1 S_2 - 3\lambda S_3 - 2\lambda^2 S_2 \equiv 0
$$
\n(3.4)

We observe that the above equation shows that S_3 is also constant on Σ^n . We also note that this argument shows, in fact, that *S* is a constant function on Σ ^{*n*} for all 2≤r≤n. From (2.7) we get

$$
|\nabla \mathbf{A}|^2 + 2S_2(S_1^2 - 2S_2 - n) - S_1(S_1S_2 - 3S_3 - (n-1)S_1 = 0
$$

More precisely,

$$
|\nabla \mathbf{A}|^2 + S_1^2 S_2 - 4S_2^2 - 2nS_2 + 3S_1 S_3 + (n-1)S_1^2 = 0
$$
\n(3.5)

We observe that if H=0, then S_1 =0 and, consequently, $|A|^2$ =-2s₂ From (3.3), we have $2S_2 = -n$ and $|A|^2 = n$. Therefore, since

$$
\frac{1}{2}\Delta |A|^2 = n |A|^2 - |A|^4 + |\nabla A|^2
$$

We have that $|\nabla A|^2 = 0$ and, hence, from Theorem 4 of [[9\]](#page-2-6), we conclude that Σ ⁿ must be a Clifford torus

$$
S^k(\rho) \times S^{n-k}(\sqrt{1-\rho^2})
$$
, for some k=0,1,...,n and some ρ >0.

Now, suppose that H≠0 By equation (3.4) we get

$$
S_1(2S_2 - \lambda(n-1)S_1 + \lambda S_1S_1 - 3\lambda S_3 - 2\lambda^2 S_2) = 0
$$
 (3.6)

that is,

$$
2S_1S_2 - \lambda (n-1)S_1^2 + \lambda S_1^2S_2 - 3\lambda S_1S_3 - 2\lambda^2 S_1S_2 = 0
$$
\n(3.7)

From equation (3.5) we have

$$
\lambda |\nabla A|^2 + \lambda S_1^2 S_2 - 4\lambda S_2^2 - 2n\lambda S_2 + 3\lambda S_1 S_3 + \lambda (n-1) S_1^2 = 0 \tag{3.8}
$$

Furthermore, from a straightforward computation we can verify that

$$
\lambda |\nabla A|^2 + 2S_1S_2 + 2\lambda S_1^2S_2 - 2\lambda^2S_1S_2 - 4\lambda S_2^2 - 2n\lambda S_2 = 0
$$
 (3.9)

Hence, if S₂ = 0 we obtain of (3.9) that $\lambda |\nabla A|^2 = 0$ consequently, $|\nabla A|^2 = 0$ and, since Σ^n is complete, it follows once more from Theorem 4 of [9] that Σ ^{*n*} must be a Clifford torus.

If S₂≠0 then 2S₂.(S₁ – *nλ* + *λ*S₁²</sub> – 2*λ*S₂ – λ ²S₁) = 0 implies $2S_1S_2 - 2n\lambda S_2 + 2\lambda S_1^2S_2 - 4\lambda S_2^2 - 2\lambda^2 S_1S_2$ = 0 (3.10)

We note that (3.10) and (3.9) imply $\lambda |\nabla A|^2 = 0$ and, hence, repeating the previous argument we also get that Σ^n is a Clifford torus. Therefore, we conclude the proof of Theorem 1.

References

- 1. [Alencar H, do Carmo M, Colares G \(1993 \)Stable hypersurfaces with constant](http://www.ams.org/journals/proc/2010-138-09/S0002-9939-10-10388-8/S0002-9939-10-10388-8.pdf) [scalar curvature. Math Z 213: 117-131.](http://www.ams.org/journals/proc/2010-138-09/S0002-9939-10-10388-8/S0002-9939-10-10388-8.pdf)
- 2. [Alias LJ, Brasil Jr A, Perdomo O \(2008\) A characterization of quadratic](https://www.dm.ufscar.br/profs/lobos/IIEPG/posters/AliasBrasilPerdomo.pdf) [constant mean curvature hypersurfaces of spheres. J Geom Anal 18: 687-](https://www.dm.ufscar.br/profs/lobos/IIEPG/posters/AliasBrasilPerdomo.pdf) [703.](https://www.dm.ufscar.br/profs/lobos/IIEPG/posters/AliasBrasilPerdomo.pdf)
- 3. [Alias LJ, Dajczer M \(2006\) Uniqueness of constant mean curvature surfaces](http://preprint.impa.br/FullText/369_Wed_Jun_29_08_59_32_BRT_2005/lumaCMH.pdf) [properly immersed in a slab. Comment Math Helv 81: 653-663.](http://preprint.impa.br/FullText/369_Wed_Jun_29_08_59_32_BRT_2005/lumaCMH.pdf)
- 4. [Aquino CP, de Lima HF \(2012\) On the Gauss map of complete CMC](http://preprint.impa.br/FullText/369_Wed_Jun_29_08_59_32_BRT_2005/lumaCMH.pdf) [hypersurfaces in the hyperbolic space, J Math Anal Appl 386: 862-869.](http://preprint.impa.br/FullText/369_Wed_Jun_29_08_59_32_BRT_2005/lumaCMH.pdf)
- 5. [Aquino CP, de Lima HF \(2014\) On the geometry of horospheres. Comment](http://www.ems-ph.org/journals/show_abstract.php?issn=0010-2571&vol=89&iss=3&rank=4) [Math Helv 89: 617-629.](http://www.ems-ph.org/journals/show_abstract.php?issn=0010-2571&vol=89&iss=3&rank=4)
- Rosenberg H (1993) Hypersurfaces of constant curvature in space forms. [Bull Sc Math 117: 217-239.](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.7127)
- 7. Cheng SY, Yau ST (1977) Hypersurfaces with constant scalar curvature. Math Ann 225: 195-204.
- 8. [Garding L \(1959\) An inequality for hyperbolic polynomials. J Math Mech 8:](http://www.jstor.org/stable/24900665) [957-965.](http://www.jstor.org/stable/24900665)
- 9. [Lawson HB \(1969\) Local rigidity theorems for minimal hypersurfaces. Ann](https://www.jstor.org/stable/1970816) [Math 89: 187-197.](https://www.jstor.org/stable/1970816)
- 10. [Reilly RC \(1973\) Variational properties of functions of the mean curvature for](https://projecteuclid.org/download/pdf_1/euclid.jdg/1214431802) [hypersurfaces in space form. J Di Geom 8: 447-453.](https://projecteuclid.org/download/pdf_1/euclid.jdg/1214431802)
- 11. [Caminha \(2006\) On hypersurfaces into Riemannnian spaces of constant](https://www.jstage.jst.go.jp/article/kodaimath/29/2/29_2_185/_article) [sectional curvature. Kodai Math J 29: 185-210.](https://www.jstage.jst.go.jp/article/kodaimath/29/2/29_2_185/_article)

Author Affiliation [Top](#page-0-1)

1 Department of Mathematics, Universidade Federal do Piaui, Teresina, Brazil 2 Department of Mathematics, Universidade Federal de Campina Grande, Campina Grande, Paraiba, Brazil

Submit your next manuscript and get advantages of SciTechnol submissions

80 Journals

- 21 Day rapid review process
- 3000 Editorial team
- \div 5 Million readers
 \div More than 5000
- More than 5000 facebook^{*}
- Quality and quick review processing through Editorial Manager System

Submit your next manuscript at ● www.scitechnol.com/submission