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Abstract

Drought severely affects crop yields and poses a great threat to
food security. It is an urgent task to mine drought tolerance
genes and breed new varieties. In previous studies,
transcription factors such as Basic Leucine Zipper (bZIP),
Dehydration-Responsive Element Binding (DREB), DNA-
Binding with One Finger (DOF), Heat Shock Transcription
Factor (HSF), v-Myb Myeloblastosis Viral Oncogene Homolog
(MYB) etc., have been found to be key factors in response to
drought stress, and the corresponding regulatory mechanisms
have been gradually analyzed. Among them, the bZIP family
has been shown to respond to drought stress through multiple
pathways in plants. Recently, our team screened OsBBP1, the
downstream target of drought tolerance regulator OsbZIP72,
through Chip-seq technology. OsBBP1, a typical DUF630/632
domain protein, is localized in the nucleus and cytoplasm, and
the DUF632 domain contributes to its localization in the
cytoplasm. Through gene function identification, it is discovered
that OsBBP1 was induced by Polyethylene Glycol (PEG) and
Abscisic Acid (ABA) and positively regulated rice drought
tolerance. Further, OsBBP1 affects Reactive Oxygen Species
(ROS) accumulation in plants by regulating ROS scavenging
enzyme activity under drought conditions were found, thereby
improving the survival rate of rice. The study revealed that the
bZIP transcription factor family responds to drought stress by
regulating DUF domain protein, and provided another
regulatory pathway for plant resistance to abiotic stress.
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Introduction
The increasing frequency and intensity of droughts due to the 

changing global climate pose a serious threat to the stability of 
agricultural production. Cultivation of drought-tolerant crops is an 
important strategy to improve the disaster resistance ability of 
agricultural production, ensure food supply, and realize resource 

conservation and environmental friendliness. In recent years, drought 
tolerance genes in plants have been discovered one after another and 
the molecular mechanisms of drought tolerance regulation have been 
gradually revealed. It mainly involves the activity of transcription 
factors, which act as switches responsible for “turning on” or “off” 
downstream target genes, and can also activate other transcription 
factors through cascades, forming complex signal networks, so that 
plants adapt to water shortage environment.

Plant response to drought is multi-pathway and the bZIP, 
Dehydration Responsive Element-Binding (DREB), DOF, Heat Shock 
Transcription Factors (HSF), Myeloblastosis (MYB), No Apical 
Meristem (NAC), Tricalcium Phosphate (TCP), WRKY and AP2/ERF 
family members act as key regulatory factors [1,2]. MYB and NAC 
transcription factors are widely involved in growth and development 
and stress response. For example, MYB46 has been found to regulate 
cell wall biosynthesis-related genes, and may be involved in drought 
tolerance with DREB1D [3,4]; ANAC019 and NtNAC053 regulate 
multiple target genes in drought response [5-7]. Some AP2/ERF 
transcription factors, such as P to ERF15, play a key role in response to 
ethylene and drought, affecting plant resistance to retroactivity. 
Members of the bZIP family plays an important role in abiotic stress 
ABA signaling pathway in plants, often binding the ABA-Responsive 
Elements (ABREs) containing an Adenine, Cytosine, Guanine and 
Thymine (ACGT) core motif, or the G-box motif [8-11]. In 
Arabidopsis, AREB1, AREB2, ABF3 and ABF1 belong to the group. A 
bZIP proteins, all of which play an integral role in ABA signaling 
response to drought stress [12-14]. In pepper plants, CaDILZ1, a 
member of subgroup D of the bZIP protein family, interacts with the 
RING finger protein CaDSR1, and involve in the ABA-mediated 
drought stress signaling pathway [15]. There are also multiple bZIP 
transcription factors that function together to cope with drought stress. 
For example, TaFDL2-1A and TabZIP8-7A, two bZIP transcription 
factors in wheat, can form transcriptional activation complex that 
synergistically promotes the expression of ABA-induced genes in 
response to drought stress [16]. In rice, OsbZIP71 directly binds to the 
promoters of abiotic stress-related genes OsNHX1 and COR413-TM1, 
and OsbZIP72 directly binds to the promoters of the high-affinity 
potassium transporter gene OsHKT1 and Sugars will eventually be 
exported transporter genes OsSWEETs, to regulate their expression 
separately, thereby maintaining the stability of plants under drought 
and salt stress [17,18]. Recently, our team discovered another target 
gene of the transcription factor OsbZIP72, OsBBP1, which positively 
regulates drought tolerance in rice [19].

OsbZIP72 binds to the promoter of OsBBP1
We screened the downstream target genes of OsbZIP72 by Chip-seq 

technology, and OsBBP1 was captured as a target candidate gene by 
enrichment analysis. Subsequently, it was verified that OsbZIP72 
could directly bind to the ACGT motif in the OsBBP1 promoter region 
by yeast one-hybrid and EMSA assays. Meanwhile, OsBBP1 
expression was observed in overexpressing OsbZIP72 rice plants and 
further verified by dual-luciferase reporter assay. It was found that 
OsbZIP72 could positively regulate the expression of target gene 
OsBBP1. Although there may still be multiple targets that have not 
been verified in our Chip-seq data results, we can speculate that 
OsbZIP72 is a transcription factor with multiple regulatory networks, 
including the existing reports on OsbZIP72.
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OsBBP1 confers rice resistance to drought stress by
regulating the accumulation of ROS

OsBBP1 is a typical Domain of Unknown Function (DUF) protein
with a DUF630 domain at its N-terminal and a DUF632 domain at its
C-terminal and OsBBP1 is distributed in both the nucleus and
cytoplasm, where the DUF632 domain contributes to its localization in
the cytoplasm. We found that OsBBP1 was induced by PEG and ABA,
suggesting that this gene may be involved in abiotic stress. On the
premise of verifying that the drought tolerance of rice was reduced
after knocking out OsbZIP72, we identified the drought resistance of
target OsBBP1 in nippon bare variety. The OsBBP1 transgenic plants
were subjected to PEG treatment and drought treatment in soil,
respectively. The results showed that OsBBP1 could positively
regulate rice drought tolerance. Under drought condition, OsBBP1 can
promote the expression of ROS scavenging-related gene APX2, APX7,
POD, CATB and CATC, and improve the activities of Catalase (CAT)
and Peroxidase (POD), suggesting that the antioxidant reaction was
enhanced to reduce excessive ROS accumulation, thus improving the
survival rate of plants. Not only that, but we also conduct field trials.
Under normal condition, OsBBP1 did not affect rice yield, but under
field drought treatment, OsBBP1 could enhance the ability of plants to
resist water shortage and reduce the loss of rice yield.

Discussion
This study reveals another pathway by which OsbZIP72 regulates

rice drought tolerance, providing scientific basis for bZIP transcription
factor family to regulate DUF domain protein, and also deepens the
understanding of DUF domain protein responding to stress. OsBBP1
has two DUF domains, and belongs to a typical DUF630/632 domain
protein. Rice Stomata Developmental Defect (RSD1)/ Rolled and
ERect LEaf (REL2), also belonging to the DUF630/632 domain
protein, affects stomatal development and is closely related to water
loss in plants under dehydration stress [20,21]. Although OsBBP1 and
RSD1/REL2 have similar protein domains, the molecular mechanisms
for coping with drought are different. With the continuous excavation
of DUF domain proteins, the discovery of these proteins in response to
stress, especially drought, has been reported, such as NtDUF868 genes
in Nicotiana, AtRDUF1 and AtRDUF2 in Arabidopsis, OsDUF668
genes and OsDUF810.7 in rice [22-25]. Overall, the researchers have
identified the importance of DUF domain proteins in plants, which
may be potential targets in crop drought resistance breeding in the
future.

Conclusion
However, the current research progress in this field is very limited

and the interesting questions remain to be addressed, including but not
limited to: (1) there are many types and quantities of DUF domain
protein in plants, whether they are widely present in the downstream
of abiotic stress regulators bZIP, DREB, DOF, HSF, MYB, etc., to
regulate plant drought tolerance; (2) it is only revealed that DUF
domain proteins are involved in regulating plant drought tolerance
functionally, but the specific regulatory pathways are still unclear. For
example, how do DUF domain proteins affect the accumulation of
ROS in plants; and (3) at present, the differences between single DUF
domain protein and double DUF domain protein are still vague.

In general, under drought condition, the transcription factor
OsbZIP72 can bind to the promoter of the target OsBBP1, to promote
the expression of the latter, and finally improve the drought tolerance

of rice by regulating the accumulation of ROS. This study provides
direct evidence that the member of DUF family participates in bZIP-
mediated drought resistance pathway.
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