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Abstract
This paper considered a deterministic SIR model to investigate 
the transmission dynamics of common cold within a population. 
This study was based on the assumption that every individual 
in the population is susceptible to the common cold. The steady 
states of the model were calculated and the local and global 
asymptotic stability analyzed. The basic reproduction number R0 
was determined.

The disease becomes endemic whenever R0>1 and dies out 
whenever R0<1. Simulations of the model were performed. It was 
found that the transmission rate is most sensitive to the disease; any 
attempt to reduce the transmission rate is marked by a reduction in 
the number of infectious individuals.

Keywords

Basic Reproduction Number; Steady States; Local and Global 
Stability; Common Cold; Simulation; Rhinopharyngitis

*Corresponding authors: Ernest Danso-Addo, Department of Mathematical 
Sciences, Faculty of Engineering, University of Mines and Technology, Tarkwa, 
Ghana; E-mail: edanso-addo@umat.edu.gh

Received: September 28, 2021 Accepted: October 18, 2021 Published: 
October 25, 2021

Introduction
The common cold or upper respiratory tract infection is a mild 

viral infectious disease caused by more than 200 virus strains. Since 
so many different viruses can cause common cold infection and new 
common cold virus strains do constantly develop, the body never 
accumulates enough resistance against them [1,2]. For this reason, 
colds are a frequent and recurring problem. Common cold infection 
is the most recurrent human disease and affects people all over the 
globe [3]. It is the leading cause of doctor visits and missed days from 
school and work. Each year, children can have between 6–12 colds 
whereas adolescents and adults typically have between 2-3 colds [1]. 
The National Institute of Allergy and Infectious Diseases (NIAID) in 
2012 estimated that individuals in the United States suffer about 100 
million colds annually with approximately 22 million days of school 
absences and 150 million workdays lost in the United States alone [4]. 

No vaccine or cure for cold exists but measures exist that can 
help relieve the body of its symptoms [5]. However, this infection if 
unattended can linger and break down the body’s defenses and lead 
to bronchitis, ear infection, sinusitis, and other serious complications 
such as pneumonia in people with weakened immune systems. 
According to the World Health Organization (WHO), respiratory 
tract infections are among the most important human health 

problems because of their high incidence and consequent economic 
cost. In the United States, the common cold leads to 75-100 million 
Physician visits annually at a conservative cost estimate of $7.7 
billion per year [3]. Drug therapy for common colds produces few 
measurable benefits and antibiotic treatment does not shorten the 
duration of the illness or prevent the development into pneumonia. 
This has therefore necessitated the need to develop a mathematical 
model for the common cold and study its dynamics.

Common cold or simply cold referred to as acute viral 
rhinopharyngitis or acute coryza is a viral infectious disease of 
the upper respiratory tract, which primarily affects the nose, the 
throat, and the sinuses. Although cold is usually mild, it can break 
the body’s defenses and present uncomfortable symptoms such as 
coughing, sore throat, runny nose, sneezing, fever, watery eyes, and 
congestion. Since anyone or well over 200 viruses can cause a cold, 
signs and symptoms tend to vary greatly. The most familiar categories 
of cold viruses include rhinoviruses, coronaviruses, and adenoviruses 
[5,6]. Moreover, symptoms that occur are mostly due to the body’s 
immune response to the infection rather than to tissue destruction by 
the viruses themselves. No cure or vaccine exists to help fight against 
Upper Tract Respiratory Infection (UTRI), but it can be prevented 
significantly by frequent hand washing. In addition, the symptoms 
can be treated, however, these infections, if not properly managed can 
lead to bronchitis, sinusitis, ear, and even pneumonia in people with 
weakened immune systems [6]. 

UTRI is the most frequent infectious disease in humans with the 
average adult getting between 2-3 colds per year and the average child 
having between 6-12 colds [7]. The common cold is a self-limited 
condition and is generally managed at home [1].

The symptoms of the common cold usually appear about one 
to three days after exposure to a cold-causing virus [4]. Typical 
symptoms include cough, runny or stuffy nose, sore throat, nasal 
congestion, slight body aches, mild headache, and fatigue. Others are 
watery eyes, loss of appetite, low-grade fever, and sneezing. A sore 
throat may be present in about 40% of the cases whereas a cough and 
a muscle ache may occur in about 50% of the cases. Generally, a fever 
may not be present in adults but it is very common in infants and 
young children. The discharge from the nose may become thicker and 
yellow or green as the common cold progresses. This does not indicate 
the virus strain causing the cold.

There are measures in place to help relieve the body of common 
cold symptoms. However, if these symptoms are not properly 
managed, they can linger and break down the body’s defenses and 
lead to the following Acute Ear Infection (Otitis media): ear infection 
occurs when bacteria or viruses infiltrate the space behind the 
eardrum [4]. 

A cold often begins with a tickle in the throat, a feeling of being 
chilled, sneezing, and headache, followed by a runny nose and cough in 
a couple of days. Symptoms may begin within 16 hours of exposure and 
typically peak two to four days after onset. Colds usually resolve in seven 
to ten days but some can prolong, lasting about two to three weeks.

The rhinovirus is the most responsible cause of UTRI and is 
known to cause 30 – 80% of all colds globally. It is highly contagious 
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and is responsible for making people sneeze and sniffle [4]. Other 
commonly implicated viruses include human coronavirus (causes 
approximately 15% of colds), influenza virus (causes10-15% of colds), 
adenovirus (causes 5% of colds), human parainfluenza virus, human 
respiratory syncytial virus, and metapneumovirus. 

A cold virus enters the body through the mouth, eyes, or nose [4]. 
The virus is transmitted via airborne droplets when someone with the 
common cold coughs, talks, or sneezes. It can also spread from person 
to person by coming into direct contact with contaminated objects 
such as utensils, stationery, towels, computers, toys, telephones, and 
doorknobs [8]. The virus may survive for prolonged periods in the 
environment (over 18 hours for rhinoviruses) and can be picked 
up by people’s hands and subsequently carried to their eyes or nose 
where infection occurs [4]. 

Nickbaksh [9] considered co-circulatory viruses that are 
accountable for acute respiratory infections. They analyzed diagnostic 
data from 44230 cases of respiratory illnesses. Key to their analysis was 
accounting for alternative drivers of correlated infection frequency. 
In mathematical simulations that mimic 2- pathogen dynamics, they 
showed that transient immune-mediated interference can cause cold-
like viruses to diminish during peak activity of a seasonal virus.

Model Formulation
In this paper, a deterministic mathematical model is formulated 

to describe the transmission of the common cold in a human 
population. This population is further compartmentalized into 
epidemiological classes as shown below Figure 1.

The susceptible population is designated as S(t) The number of 
the infected population is denoted by whiles the recovered individuals 
are represented by R(t). The recruitment rate of the population is µ 
and the total number of new births is denoted by µN. The contact rate 
β is the rate at which susceptible individuals come into contact with 
the infected population. The recovery rate is the rate of progression 
from the infectious class to the recovery class. The per capita loss of 
immunity is given by α

Assumptions of the Model

i) Every individual in the population is susceptible to 
common cold infection.

ii) There are no deaths as a result of catching a cold.

iii) There is no progression from the susceptible class into the 
exposed class because one becomes infectious after catching a cold virus.

iv) The natural death rate is equivalent to the birth rate because 
of the short duration of the disease.

v) Recovered individuals have temporarily induced immunity

Formulated Model Equation

The following systems of differential equations are formulated 
from the compartmental model diagram above to mimic the 
dynamics of the common cold. 

(2.1)

(2.2)

(2.3)

dS SIN S R
dt N

dI SI I I
dt N

dR I R R
dt

βµ µ α

β γ µ

γ α µ

= − − +

= − −

= − −

Equilibrium Solutions

The steady states of the system of differential equations in 
Equations (2.1) to (2.3) is attained by equating the system off to zero 
and solving to get the disease-free, E0 and the endemic equilibrium E1 
in Equations (2.4) and (2.5) as follows: 

{ }0 ,0,0 (2.4)E N=

( ) ( )( )
( )

( )
( )1 , , (2.5)

N N N
E

γ µ β γ µ α µ β γ µ
β β γ α µ β γ α µ

 + − − + − − =  + + + +  

Determination of the Basic Reproduction Number (R0)  

For the computation of R0, it is crucial to distinguish new 
infections from all other changes in the population. From Equation 
(2.2) the disease state at equilibrium is given by Equation (2.6).

0dI SI I I
dt N

β γ µ= − − =              (2.6)

At the onset of the disease, nearly everyone is susceptible to 
infection. Thus, the number of susceptible individuals is equal to the 
total population; S=N. Substituting this into (2.6) gives;

0 1I I I ββ γ µ
γ µ

− − = ⇒ =
+

            (2.7)

Hence, the basic reproduction number is calculated as

0R =  
β

γ µ+
                  (2.8)

Local Asymptotic Stability of the Disease Free Equilibrium

The stability analysis for the system of Equations (2.1) to (2.3) 
is outlined in this section. The disease-free equilibrium in Equation 
(2.4) is locally asymptotically stable if and only if R0 >1 [8].

The Jacobian matrix of the system is given in Equation (3.1).

0

0

 

I S

I S
N N

J
N N

β βµ α

β β γ µ

γ α µ

 − 
 
 = − 
 −  
 

− −

−

−

            (3.1)

The Jacobian J, evaluated at the disease-free equilibrium, E0 is 
represented in the array below.

( ) 0 0 J E
µ β α

β γ µ
γ α µ

 
 = − 
 
 

           (3.2)
Figure 1: Compartmentalized model of the common cold.
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The characteristic polynomial of the Jacobian matrix in Equation 
(3.2) is given in Equation (3.3).

( )( )( ) 0λ µ λ γ β µ λ α µ+ + − + + + =              (3.3)

The solution to the characteristic polynomial (3.3) gives the 
following eigenvalues;

1 0λ µ= − <

2λ β γ µ= − − . This may either be positive or negative.

3 0λ α µ= − − <

The disease-free equilibrium is locally asymptotically stable 
provided all eigenvalues are negative. Items λ1 and λ3 are negative. 
Hence imposing a negativity condition on λ1 2 gives:

0β γ µ− − <               (3.4)

This implies that β γ µ< + . Dividing through by the right hand 
side gives Equation (3.5)t

1β
γ µ

<
+

               (3.5)

Since 0R β
γ µ

=
+

 implies

0 1R <                (3.6)

Therefore, the disease-free equilibrium is proven to be locally 
asymptotically stable provided R0< 1

Local Asymptotic Stability of the Endemic Equilibrium

The endemic equilibrium in Equation (2.5) is locally asymptotically 
stable if and only if R0>1 [8].

The Jacobian matrix of the system is given by

0

0

 

I S

I S
N N

J
N N

β βµ α

β β γ µ

γ α µ

 − 
 
 = − 
 −  
 

− −

−

−

            (3.7)

The Jacobian J, evaluated at the endemic equilibrium E1 is 
represented in the array below

1

)

0

( )(

( )( )(

0

 ) 0J E

γ β µ α µ µ γ µ
γ α µ

γ β µ α µ
γ α

γ µ
µ

α

α


−

− + + − − − + + 
− − + + =  + + 

− 

 

(3.8)

Equation (3.9) is the characteristic polynomial of Equation (3.8).
2 2 2 2 2 2 2 2

2 2 2 2

2 3 2 2 3 2

2 2 3 2 2 2 3 2

2 3 3 2 2 3 4

3 2 3
1 3 2 2 0

2
2 2

α βλ α βµ α γλ α γµ α λ α µ αβγλ

αβγµ αβλ αβλµ αβµ αγ λ αγ µ αγλµ

αγµ αλ αλ µ αλµ αµ βγλµ βγµ
γ α µ

βλ µ βλµ βµ γ λµ γ µ γλ γλ µ

γλµ γµ λ µ λ µ λµ µ

 − − + + − + −
 

− − − − + + + 
−  + − − + + − − = + +

 − − − + + − −
  + + − − + + 

(3.9)

The solution to the characteristic polynomial (3.9) gives the 
following eigenvalues;

1 0λ µ= − <               (3.10)

( )2 K B Cλ = − −             (3.11)
1 1

2
K

γ α µ
 −

=  + +               (3.12)

Where 1 1
2

K
γ α µ

 −
=  + + 

, ( )2B α αβ αµ βµ= + + + ,

and
4 3 3 3 2 2 2 2

2 2 2 2 2 2 2

2 3 2 2 3 2 2

2 2 3 3 2 2 3 4

2 4 6 8 8
8 20 13 2 4 16
10 4 20 28 12
4 8 4 4 12 12 4

C

α βλ α β α γ α µ α β α βγ α βµ

α γ α γµ α µ αβ µ αβγ αβγµ

αβµ αγ αγ µ αγµ αµ β µ

βγ µ βγµ βµ γ µ γ µ γµ µ

 − + + + − −
 

+ + + + − − =  − + + + + + 
 − − − + + + + 

From Equations (3.10) and (3.12), it is clearly evident that 1λ , 
3λ  < 0 so, for 2λ to be negative, 

( ) 0B C− >             (3.13)

⇒ 2B C>                               (3.14)

Therefore,  2 0B C− >         (3.15)

Substituting for the expressions of B and C and factorising yields 
Equation (3.16).

24( )( ) ( ) 0α µ γ α µ γ β µ− + + + − + >        (3.16)

Therefore, 2 0B C− >  provided

( ) 0γ β µ− + <            (3.17)

⇒  0β
γ µ

>
+

           (3.18)

Therefore, the Endemic Equilibrium is locally asymptotically 
stable provided R0 >1.

Global Asymptotic Stability 
The global asymptotic stability was carried out for the disease-free 

equilibrium and the endemic equilibrium.

Global Asymptotic Stability of the Disease-Free Equilibrium

The global asymptotic stability of the disease-free equilibrium was 
proven by the theorem below. 

Theorem 4.1

 If 
0 1R ≤ , then the disease-free equilibrium is globally 

asymptotically stable in the Domain. 

Proof

Define ( ){ }: , , : 0V S I R S R∈Ω > →  by the Lyapunov function 

(I) ( )V I t=               (4.1)

Differentiating the Lyapunov function gives

(I) I(t)V =               (4.2)

From Equation (2.2), we obtain Equation (4.3).

(I) ( ) ISIV
N

β γ µ= − +              (4.3)
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Equivalently,

( ) I  V( )
N

I Sβ γ µ − +


= 


           (4.4)

Further simplification yields ( ) I 1
(

V( )
)

S
N

I βγ µ
γ µ

 
+ − + 

=

At the disease-free equilibrium, the susceptible population, 
S N= , the total population. Hence,

( )[ ]0V( ) 1 I RI γ µ+= −            (4.5)

Therefore, ( ) 0V I ≤ provided 0 1R ≤ .

Hence, the disease-free equilibrium is globally asymptotically 
stable.

Global Asymptotic Stability of the Endemic Equilibrium

In this subsection, the global stability of the Endemic Equilibrium 
is proven by the use of the Lyapunov function. 

Theorem 4.2

The endemic equilibrium in equation 4.3 is globally asymptotically 
stable in the domain ϕ  if and only if 0 1R > .

Proof

Let consider the Lyapunov function candidate of the form 
:{( , ) : , 0}V S I S I Rϕ∈ > →  defined by

[ ]2
1 1 1 1

1

1 ( 2 2 )( , ) ( ) ( ) ln
2

N IV S I S S I I I I I
I

γ µ α
β

  + +
= − + − + − −  

  
 (4.6)

Then, V is 1C  on the interior of ϕ , 1E  is the global minimum 

of V  on 
1 1( , ) 0V S I =

 and 1 1( , ) 0V S I = . Differentiating the Lyapunov function 
V gives 

[ ] [ ] 1
1 1 1

1

( 2 2 )( ) ( ) ( ) Id N IV S S I I S I I I
dt I I

γ µ α
β

 + +  = − + − + + −  
  

(4.7)

Simplifying further,

[ ] [ ] 1
1 1

( 2 2 )( ) ( ) ( ) I Id NV S S I I S I I
dt I

γ µ α
β

+ +  = − + − + + −  
(4.8)

Hence,

[ ] [ ] 1
1 1

( 2 2 )( ) ( ) ( ) I Id NV S S I I S I I
dt I

γ µ α
β

−+ +  = − + − + +   
(4.9)

At the equilibrium, 0, 0,  and 0dS dI dR
dt dt dt

= = = . Now, ( )R N S I= − −  
which implies 

( ) 0dS SIN S N S I
dt N

βµ µ α= − − + − − =           (4.10)

1
1 1( )S IdS N S I N

dt N
βµ µ α α α= − − + − +         (4.11)

dI
dt

= 
N
SIβ  – γI – μI           (4.12)

⇒ ( ) ( )( )d dS dIS I N S I N I
dt dt dt

µ µ α α γ+ = + = − + + + −  (4.13)

Substituting Equations (4.11) to (4.13) into Equation (4.9) gives 
Equation (4.14)

[ ]1 1

1

( ) ( ) { ( )( ) }

( 2 2 ) ( )S

V S S I I N S I N I

I IN I
I N

I

µ µ α α γ

γ βµ α γ µ
β

= − + − − + + + −

−+ +    + − +     

 (4.14)

At the steady states,

1 1 1( )( )N S I N Iµ µ α α γ= + + + −          (4.15)

Thus, putting Equation (4.15) into (4.14) gives Equations (4.16).

[ ]{ }1 1 1 1 1

1

( ) ( ) (( )( ) ) (( )( ) )

( 2 2 ) ( )

V S S I I S I N I S I N I

I IN I
I N

SI

µ α α γ µ α α γ

γ µ α γ µβ
β

= − + − + + + − − + + + −

−+ +    + − +     

(4.16)

Further simplification of Equation (4.16) yields Equation (4.17) 
and (4.18).

[ ]{ }1 1 1 1 1

1

( ) ( ) ( )(( ) ( )) ( )

( 2 2 ) ( )

V S S I I S I S I I I

I IN S I
I N

Iβ

µ α γ

γ µ α γ µ
β

= − + − − + + − + − −

−+ +    + − +     

(4.17)

[ ]1 1 1 1 1

1

( ) ( ) { ( )( ) ( )( ) ( )}

( 2 2 ) ( )

V S S I I S S I I I I

I IN I
I

SI
N

µ α µ α γ

γ µ α γ µ
β

β

= − + − − + − − + − − −

−+ +    + − +     

(4.18)

Again, making the assumption in Equation (4.19) and substituting 
it into Equation (4.18) we have the following:

1( ) S
N

βγ µ+ =            (4.19)

[ ]1 1

1

1 1 1

1

( ) ( ) { ( )( ) ( )( ) ( )}

( 2 2 )

V S S I I S S I

S I

I I I

IN
I

S
N

II
N

µ α µ α γ

γ µ ββα
β

= − + − − + − − + − − −

−+ +    + −     

  (4.20)

[ ]{ }1 1 1

1
1

1 1( ) ( ) ( )( ) ( )( ) ( )

( 2 2 ( )) S

V S S I I S S I I I I

I IN
I N

I S

µ α µ α γ

γ µ
β

βα

= − + − − + − − + − − −

−+ +    + −     

(4.21)

[ ]{ }

( )( )

1 1 1 1 1

11

( ) ( ) ( )( ) ( )( ) ( )

( 2 2 ) S

V S S I I S S I I I I

N I I
N

S

µ α µ α γ

γ µ α β
β

⇒ = − + − − + − − + − − −

+ +  + − −     
(4.22)

[ ]
( ) ( )( )

1

1

1 1 1 1

1

( ) ( ) { ( )( ) ( )( ) ( )}

2 2 S

V S S I I S S I I I

S

I

I I

µ α µ α γ

γ µ α

⇒ = − + − − + − − + − − −

+ + + − −  
(4.23)

Expanding and simplifying the Equation (4,23) gives Equation 
(4.24).

( ) ( )( )

2
1 1 1 1 1

2
1 1

1 1

1

üüüüüüü
( )( )( ) ( )( ) }

2 2 S

V S S S S I I S S I I
S S I I I I

I SI

µ α µ α γ

µ α µ α γ

γ µ α

= − + − − + − − − − −

− + − − − + + −

+ + + − −  

(4.24)

Rearranging and simplifying yields Equation (4.25) and (4.26).

( )

2
1 1 1

1
2

1 1

( )( ) ( 2 2 )( )( ))
2 2 ( )(S ) ( )( )

S S S S I I
V

I I I IS
µ α γ µ α

γ µ α µ α γ

 − + − − + + − − =  
+ + + − − − + + −  

(4.25)

2 2
1 1( )( ) ( )( )V S S I Iµ α µ α γ⇒ = − + − − + + −           (4.26)

Hence V ≤ 0.V=0 If and only if *S S= and *I I= . Therefore, the 
Endemic Equilibrium is globally asymptotically stable in the interior 
of ϕ .

Simulation and Analysis of the Common Cold Model
Numerical simulations are carried out to give graphical 

representations of the model. Estimated parameter values are shown 
in Table 1. The parameter values were estimated using different 
sources of literature [10-12].
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Numerical Simulation of the Model

The following graphs are the solution curves of the system of 
differential equations (4.1) to (4.3). 

Discussion the Model
Figure 2 shows the interaction of the evolution of the common 

cold infection in an entire population. An introduction of infectives 
into the population leads to a rapid decline in the number of 
susceptible individuals. This is as a result of a higher effective contact 
rate As the disease goes through the population, the susceptible 
population declines and attains a minimum. As the susceptible class 
decreases, the number of infected individuals increases initially due to 
the spread of the common cold and becomes endemic. Figure 3 shows 
the numerical simulation of the susceptible individuals. The common 
cold infection is a self-limited disease (Infectious individuals recover 
in a short while) and recovery from the disease does not confer 
permanent immunity. The number of susceptible individuals begins 
to rise again and fluctuates as some of the recovered individuals 
catch the disease again. This phenomenon continues until it reaches 
a threshold where the disease becomes endemic in the population.

In Figure 4, the absence of the disease at the initial stage is the 
reason why the infectious class is zero. Once an epidemic starts, the 
infectious class grows exponentially as more individuals from the 
susceptible class join the infectious class due to a higher effective 

contact rate. The number of infectious individuals then decreases 
sharply because of the shorter life span of the common cold. This 
results in an increase in the number of susceptible individuals. The 
infectious population increases up to the peak of the disease and 
decreases becomes asymptotic to the horizontal.

Figure 5 is a direct consequence of Figure 4. It represents the 
numerical simulation of the Recovered class at given times. When 
common cold is introduced into the susceptible population the 
number of recovered individuals rises exponentially with time 
since the common cold infection has a shorter life span and more 
individuals recover from the disease. Almost the total population 
recovers from common cold infection eventually. Recovery from 
common cold disease does not confer permanent immunity.

The Simulation of the model to determine the sensitivity of the 
transmission rate is shown in Figure 6. Various parameters were 
examined against the disease (Common Cold) to check which 
parameter is more sensitive. The results showed that the transmission 
rate is the most sensitive, with the other parameters being slightly 
sensitive. It can be seen from (Figure 5) that any attempt to reduce 
the transmission rate is marked by a reduction in the number of 
infectious individuals. At transmission rate β=0.1 ( ), it is observed 
that the disease eventually dies out in the long run. At contact rate 
β=0.3 through to 0.8 in which case >1, it is observed that the infection 
can spread in the population. 

Figure 2: The solution curves showing the evolution of the disease and the interaction among the state variables.
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Figure 3: Evolution  of the susceptible individuals.
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Figure 4: Evolution  of the infected population.
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Figure 5: Simulation of the Recovered Individuals.
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Figure 6: Simulation to Show the Sensitivity of the Transmission Rate on the Disease.

Conclusion
In this paper, a deterministic mathematical model for 

rhinopharyngitis has been formulated and its dynamics duly 
investigated. From the model, the basic reproduction number was 

derived. The disease-free equilibrium, E0, was calculated and found 
to be locally asymptotically stable whenever R0<1. The endemic 
equilibrium E1 was also found to be locally asymptotically stable 
whenever R0>1. Lyapunov functions were used to establish that the 
steady states are globally asymptotically stable. 
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The model was simulated to ascertain the evolution of the disease 
and performed sensitivity analysis on the basic reproduction 
number from which it was concluded that the parameter β is the 
most sensitive. 

Due to the relative mildness of the common cold infection, 
proper attention has eluded it, yet the economic impact is enormous. 
Proper personal hygiene if practiced will effectively retire the disease.
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