

3rd World Congress and Expo on

GREEN ENERGY

September 28-29, 2017 Berlin, Germany

Production and usage of solar liquid fuels

Shunichi Fukuzumi^{1,2} ¹Ewha Womans University, Korea ²Meijo University, Nagoya, Japan

Sustainable and clean energy resources using solar energy are urgently required in order to solve global energy and environmental issues. This lecture focuses on the combination of production of liquid fuels such as formic acid, methanol, and hydrogen peroxide using solar energy, so called solar liquid fuels, and their use in direct liquid fuel cells. In particular, photocatalytic production of hydrogen peroxide (H_2O_2) from seawater and dioxygen (O_2) in the air as a solar fuel is combined with its use in one compartment hydrogen peroxide fuel cells. We have developed a variety of photosynthetic reaction center models composed of organic electron donors and acceptors linked by covalent or non-covalent bonding, which undergo efficient charge separation and slow charge recombination. The efficient charge-separation step has been successfully combined with the catalytic water reduction step with earth-abundant metal catalysts to develop efficient photocatalytic hydrogen evolution systems. The photocatalytic oxidation of water with O_2 in the air to produce H_2O_2 has been achieved, together with the development of H_2O_2 fuel cells. The photocatalytic oxidation of water with O_2 in the air was found to be enhanced significantly in seawater. Thus, the combination of the photocatalytic H_2O_2 production from seawater and O_2 using solar energy with one-compartment H_2O_2 fuel cells provides on-site production and usage of H_2O_2 as a more useful and promising solar fuel than H_2 .

fukuzumi@chem.eng.osaka-u.ac.jp