Andrology & Gynecology: Current ResearchISSN: 2327-4360

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Prediction and prevention of hypoxic-ischemic brain injury of the fetus and newborn.

According to retrospective analysis, hypoxic-ischemic brain damage and the development of neonatal HIE contribute to perinatal hypoxia, which occurs in complicated pregnancy: extragenital pathology in the mother (OR 1090.81; 95% CI 64.50–18447.40); placental dysfunction and fetal growth retardation (OR 7.39; 95% CI 2.94–18.57); premature placental abruption (OR 10.89; 95% CI 0.59–199.58); polyhydramnios (OR 2.19; 95% CI 0.85–5.62).

Pertrospective analysis of labor in cases of intranatal fetal hypoxia and HIE in newborns showed that the most significant risk factors are premature rupture of membranes and time without amniotic fluid over 24 hours (OR 6.25; 95% CI 1.36–28.70), chorioamnionitis (OR 17.6; 95% CI 2.28–135.40), anomalies of labor (OR 21.87; 95% CI 1.26–387.39); use of obstetric forceps (OR 357.62; 95% CI 21.60–5920.23).

Independent risk factors for severe asphyxia of the fetus and newborn and subsequent adverse neurological consequences are gestational age at birth: 26–27 weeks (OR 21.87; 95% CI 1.26–378.39); 29–30 weeks (OR 29.02; 95% CI 1.70–495.10); 31–32 weeks (OR 42.017; 95% CI 2.66–752.83); 33–34 weeks (OR 44.79; 95% CI 2.66–752.83); fetal weight at birth 500–999 g (OR 15.15; 95% CI 0.85–268.86); 1000–1499 g (OR 34.04; 95% CI 2.00–577.21); 1500–1999 g (OR 39.04; 95% CI 2.33–663.489). Extremely low birth weight infants most often had severe complications such as RDS type 1 or 2, intraventricular hemorrhage, depression or excitation syndrome, necrotic enterocolitis, and birth trauma that required intensive care and artificial ventilation.

Comparative analysis of neurospecific markers in umbilical cord blood and in the blood of newborns with hypoxic-ischemic lesions of the central nervous system showed that a highly specific marker of fetal brain damage is an increase in neuronspecific enolase (NSE) and S-100 protein in umbilical cord blood, which can be used as a prognostic test. NSE sensitivity was determined – 0.87 (95% CI 0.61– 0.97), specificity 0.58 (95% CI 0.52–0.61), S-100 protein sensitivity – 0.8 (95% CI 0.46–0.96), specificity – 0.54 (95% CI 0.49–0.56).

Neuroprotection with magnesium sulfate in pregnant women at birth up to 32 weeks reduced the incidence of neonatal asphyxia and distant neurological complications in 92.8% of children, indicating high efficacy.

Special Features

Full Text

View

Track Your Manuscript

Media Partners

GET THE APP