VEGETOS: An International Journal of Plant ResearchOnline ISSN: 2229-4473
Print ISSN: 0970-4078

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

https://blogum.blogaaja.fi/
https://blogum-1.jimdosite.com/
https://blogummm.edublogs.org/
https://blogummm.websites.co.in/
https://blogum18.wordpress.com/
https://benim-blogum.jigsy.com/
https://fuiegs-symbeaurds-build.yolasite.com/
https://blogum-03.webselfsite.net/
https://blogummm.mystrikingly.com/
https://blogum.splashthat.com/
https://blogum3.webnode.com.tr/
https://blogum.odoo.com/
https://blogum.creatorlink.net/
https://whiteseotr1-s-site.thinkific.com/enrollments
https://blogum.estranky.cz/
https://653ba4fbb538c.site123.me/
https://blogum12m.blogspot.com/
https://blogum.hashnode.dev/
https://whiteseoturkey1.wixsite.com/blogum
https://sites.google.com/view/blogummm/
https://codepen.io/blogum
https://blogumm.livejournal.com/
https://wakelet.com/@blogum82816
https://www.homify.com/users/9538383/blogum
https://lessons.drawspace.com/profile/323613/blogum
https://my.desktopnexus.com/blogum/
https://writeupcafe.com/profile/BLOGUM/
https://www.pearltrees.com/blogum
https://www.easyfie.com/blogum
https://pharmahub.org/members/27615/profile
https://www.zupyak.com/u/blogum/posts
https://www.metroflog.co/blogum
https://www.fuzia.com/fz/blogum-blogum
https://tr.pinterest.com/blogum12/
https://my.getjealous.com/blogum
https://micro.blog/blogum
https://www.tumblr.com/blogummm
https://hub.docker.com/u/blogum
https://fire.blogfree.net/?act=Profile&MID=1342323
https://blogum.pixnet.net/blog
https://www.threadless.com/@blogum/activity
https://blogum.neocities.org/
https://blogum12.amebaownd.com/
https://teletype.in/@blogum
https://ubl.xml.org/users/blogum
https://educatorpages.com/site/blogum/
https://blogum.onlc.fr/

Effects of Supplemental UV-B Radiation on Flower and Pod Formation in Soybean (Glycine max L.) Crop.

Effects of Supplemental UV-B Radiation on Flower and Pod Formation in Soybean (Glycine max L.) Crop.

Global climate change components such as carbon dioxide (CO2) concentration, temperature and ultraviolet-B (UV-B) radiation are continuously increasing. The objective of this study was to determine the effects of season-long exposures of supplemental UV-B. Effect of supplemental UV-B radiation on the flower and fruit formation in soybean was assessed. Supplemental UV-B radiation was given by halogen lamps. The study reveals that the number of flower was increased when plants were exposed to longer (2 and 3 hour) supplemental UV-B radiation in comparison to control. Pod formation was promoted at all supplemental UV-B radiation but it was observed maximum at shorter exposure (1 hour) of supplemental UV-B. At the maturity of the crop, the pod formation was recorded highest at 1 hr than at 2 hr and 3 hr supplemental UV-B radiation when compared with control. Overall results indicated that supplemental UV-B radiation promoted the growth of flower and fruit in soybean (Glycine max L.) crop.

Special Features

Full Text

View

Track Your Manuscript

Media Partners

GET THE APP