Journal of Bioengineering and Medical Technology

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Editorial Announcement:

Reversible storage of hydrogen in the form of stable and relatively harmless chemical substances such as formic acid (FA) is one of the corner-stones of fossil fuels-free economy. Recently, Ru(III)-PC(sp3) P (where PC(sp3)P = modular dibenzobarrelene-based pincer ligand possesing a pendant functional group1) complex has been reported as a mild and E-selective catalyst in semihydrogenation of alkynes with stoichiometric neat formic acid.2 Discovery of the additive-free protocol for dehydrogenation of FA launched further studies aiming at the rational design of highly efficient catalysts for this reaction operating under neutral conditions. We now report the results of our investigation on a series of bifunctionl PC(sp3)P complexes equipped with different outer-sphere auxiliaries, that allowed to identify an amine-functionalized Ir(III)-PC(sp3)P complex, as a clean and efficient catalyst for the FA dehydrogenation. The catalyst is suitable for fuel cells applications demonstrating TON up to 5*105 and TOF up to 2*104 h-1 (3.8*105 and 1.2*104 h-1 neat FA). In addition to the practical value of the catalyst, experimental and computational mechanistic studies provide rationale for the design of improved nextgeneration catalysts.3.

Special Features

Full Text

View

Track Your Manuscript

Media Partners

GET THE APP